

G6

Maximum Marks: 720 Time: 3 Hours 20 Minutes

## NEET (UG) - 2023

## **Important Instructions:**

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **side-1** and **side-2** carefully with blue/black ball point pen only.
- 2. The test is of 3 hours 20 minutes duration and Test Booklet contains 200 multiple-choice questions (four option with a single correct answer) form Physics, Chemistry and Biology (Botany and Zoology). 50 questions in each subject are divided into two sections (A and B) as per details given below:
  - (a) Section A shall consist of 35 (Thirty five) Questions in each subject (Question Nos 1 to 35, 51 to 85, 101 to 135 and 151 to 185). All questions are compulsory.
  - **(b) Section B** shall consist of 15 (Fifteen) questions in each subject (Question Nos 36 to 50, 86 to 100, 136 to 150 and 186 to 200). In section B, a candidate needs to attempt any 10 (Ten) questions out of 15 (Fifteen) in each subject.

Candidates are advised to read all 15 questions in each subject of section B before they start attempting the question paper. In the event of a candidate attempting more than ten questions, the first ten questions answered by the candidate shall be evaluated.

- **3.** Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 4. Use Blue/Black Ball Point Pen Only for writing particulars on this page/marking responses on Answer Sheet.
- **5.** Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 6. On completion of the test, the candidate must hand over the Answer Sheet (ORIGINAL and OFFICE Copy) to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 7. The CODE for this Booklet is Q5. Make sure that the CODE printed on Original Copy of the Answer Sheet is the same as on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- **8.** The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- **9.** Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- **10.** Each candidate must show on demand his/her Admit Card to the Invigilator.
- 11. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 12. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- **13.** Use of Electronic/Manual Calculator is prohibited.
- **14.** The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this Examination.
- 15. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.
- 17. Compensatory time of one hour five minutes will be provided for the examination of three hours and 20 minutes duration, whether such candidate (having a physical limitation to write) uses the facility of scribe or not.

| SE | СТІО   | N - A                    |             |                | PHYS                                     | ICS                                                 |           |                |        |
|----|--------|--------------------------|-------------|----------------|------------------------------------------|-----------------------------------------------------|-----------|----------------|--------|
| 1. | respe  |                          | eident elec | tromagnetic    | radiation has                            | d Sodium (Na) a<br>an incident ene<br>Both Na and K | ergy of   |                |        |
| 2. |        | net magnetic fl Negative | . ,         | •              | , ,                                      | Positive                                            | (4)       | infinity       |        |
| 3. | If the | e galvanometer           | G does no   | t show any d   | deflection in the $\frac{400 \Omega}{R}$ | e circuit shown,                                    | the valu  | e of R is give | n by : |
|    | (1)    | $400\Omega$              | (2)         | $200\Omega$    | (3)                                      | $50\Omega$                                          | (4)       | $100\Omega$    |        |
| 4. | to ac  | mains of 220             | V. Assumi   | ng the transfe |                                          | tep down transfo<br>eal, what is the c              | urrent ir | _              |        |

A full wave rectifier circuit consists of two p-n junction diodes, a centre-tapped transformer, capacitor and

**(2)** 

**(4)** 

In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally

at a frequency of  $2.0 \times 10^{10} \, \text{Hz}$  and amplitude  $48 \, \text{Vm}^{-1}$ . Then the amplitude of oscillating magnetic field

A metal wire has mass (0.4  $\pm$  0.002) g, radius (0.3  $\pm$  0.001) mm and length (5  $\pm$  0.02) cm. The maximum

**(3)** 

Light travels a distance x in time  $t_1$  in air and 10x in time  $t_2$  in another denser medium. What is the critical

An electric dipole is placed at an angle of 30° with an electric field of intensity  $2 \times 10^5 \, NC^{-1}$  It experiences

**(3)** 

Let a wire be suspended from the ceiling (rigid support) and stretched by a weight W attached at its free end.

**(3)** 

 $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$  (2)  $\sin^{-1}\left(\frac{t_2}{t_1}\right)$  (3)  $\sin^{-1}\left(\frac{10t_2}{t_1}\right)$  (4)  $\sin^{-1}\left(\frac{t_1}{10t_2}\right)$ 

a torque equal to 4 N m. Calculate the magnitude of charge on the dipole, if the dipole length is 2 cm.

1.3%

6 mC

W/A

Capacitor

A centre-tapped transformer

(4)  $1.6 \times 10^{-7} \text{ T}$ 

1.6%

4 mC

W/2 A

**(4)** 

**(4)** 

**(4)** 

a load resistance. Which of these components remove the ac ripple from the rectified output?

(2)  $1.6 \times 10^{-9}$  T (3)  $1.6 \times 10^{-8}$  T

5.

6.

7.

8.

9.

10.

**(1)** 

**(1)** 

**(1)** 

**(1)** 

1.4%

angle for this medium?

2 mC

Zero

Load resistance

 $1.6 \times 10^{-6} \text{T}$ 

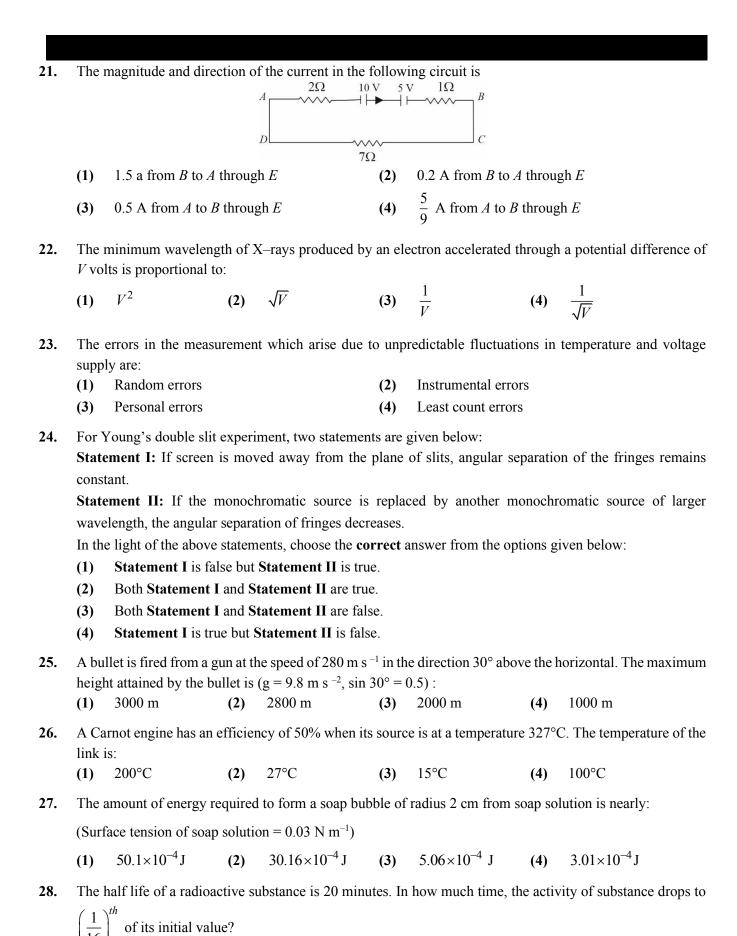
p-n junction diodes

is: (Speed of light in free space =  $3 \times 10^8 \text{ ms}^{-1}$ )

**(2)** 

**(2)** 

**(2)** 


possible percentage error in the measurement of density will nearly be:

8 Mc

2W/A

The longitudinal stress at any point of cross-sectional area A of the wire is:

| 11. |                        | drogen spectrum, t<br>ket series is:                               | he sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rtest wavelength ir                       | the B                        | almer series is $\lambda$ .                                      | The sl       | hortest wavelength in the               |
|-----|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|------------------------------------------------------------------|--------------|-----------------------------------------|
|     | (1)                    | 16λ                                                                | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\lambda$                                | (3)                          | 4λ                                                               | (4)          | 9λ                                      |
| 12. |                        | temperature of a gased by 3 times?  223 K                          | s is $-5^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0° C. To what temp                        | peratur<br>(3)               | e the gas should be 3295° C                                      | heated       | d so that the rms speed is 3097 K       |
| 13. |                        | otball player is monent. The force that along south-west           | acts o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | -                            |                                                                  |              | same speed to avoid an along north-east |
| 14. |                        | ratio of frequencies ame length is: 3:1                            | of fun<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | damental harmonio                         | e produ<br>(3)               | aced by an open pip  2:1                                         | to to to (4) | hat of closed pipe having  1:3          |
| 15. | The a (1) (3)          | angular acceleration<br>along the axis of r<br>along, the radius t | otation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                         | (2)<br>(4)                   | reumference of a cir<br>along the radius, a<br>alone the tangent | away f       | rom centre                              |
| 16. | State<br>State         | Statement I is inco<br>Both Statement I is<br>Both Statement I is  | ode is destatement of the statement of t | ices can convert op<br>esigned to operate | under a ost app correct oct. | reverse bias in breal<br>propriate answer from                   | kdown        | n region<br>options given below         |
| 17. | If ∮ s (1) (2) (3) (4) | the number of flux<br>the magnitude of                             | nside tl<br>x lines<br>electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he surface is necess                      | e must                       | be equal to the nunner                                           | nber of      | f flux lines leaving it.                |
| 18. | must                   | be:                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                              | •                                                                | ·            | . The colour of third band              |
|     | (1)                    | Yellow                                                             | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Red                                       | (3)                          | Green                                                            | (4)          | Orange                                  |
| 19. | The 1                  | magnetic energy sto                                                | ored in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an inductor of indu                       | ctance                       | $4\mu H$ carrying a c                                            | urrent       | of 2 A is                               |
|     | (1)                    | $8\mu J$                                                           | <b>(2)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4\mu J$                                  | (3)                          | 4 <i>mJ</i>                                                      | <b>(4)</b>   | 8mJ                                     |
| 20. |                        | series <i>LCR</i> circuit, ency at which reson                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Н, сара                      | ecitance C is $1\mu F$                                           | and re       | sistance $R$ is $100\Omega$ . The       |
|     | (1)                    | 1.59 kHz                                                           | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.9 rad/s                                | (3)                          | 15.9 kHz                                                         | (4)          | 1.59 rad/s                              |

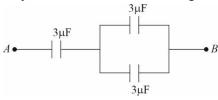


20 minutes

**(2)** 

**(1)** 

80 minutes


40 minutes

**(3)** 

60 minutes

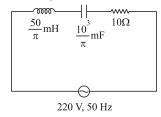
**(4)** 

- 29. The potential energy of a long spring when stretched by 2 cm is U. If the spring is stretched by 8 cm, potential energy stored in it will be:
  - **(1)** 16U
- **(2)** 2U
- **3**) 4U
- **(4)** 8U
- **30.** The equivalent capacitance of the system shown in the following circuit is:



- (1)  $9 \mu F$
- (2)  $2 \mu F$
- (3)  $3 \mu F$
- (4) 6 µI
- 31. A vehicle travels half the distance with speed v and the remaining distance with speed 2v. Its average speed is:
  - $(1) \quad \frac{3\upsilon}{4}$
- (2)  $\frac{\upsilon}{3}$
- $(3) \quad \frac{2\upsilon}{3}$
- (4)  $\frac{4u}{3}$
- 32. The ratio of radius of gyration of a solid sphere of mass M and radius R about its own axis to the radius of gyration of the thin hollow sphere of same mass and radius about its axis is:
  - **(1)** 5:2
- **(2)** 3:5
- **(3)** 5:3
- **(4)** 2:5
- 33. Two bodies of mass m and 9m are placed at a distance R. The gravitational potential on the line joining the bodies where the gravitational field equals zero, will be (G = gravitational, constant).
  - $(1) \qquad -\frac{20Gn}{R}$
- $(2) \qquad -\frac{8Gm}{R}$
- $(3) \qquad -\frac{12\,Gn}{R}$
- $(4) \qquad -\frac{16Gm}{R}$

- **34.** The venturi–meter works on:
  - (1) The principle of perpendicular axes
- (2) Huygen's principle


(3) Bernoulli's principle

- (4) The principle of parallel axes
- **35.** An ac source is connected to a capacitor C. Due to decrease in its operating frequency:
  - (1) capacitive reactance remains constant
- (2) capacitive reactance decrease.
- (3) displacement current increases.
- (4) displacement current decreases.

37. The resistance of platinum wire at 0°C is  $2\Omega$  and  $6.8\Omega$  at 80°C. The temperature coefficient of resistance of the wire is:

(1)  $3 \times 10^{-1} \, {}^{\circ}C^{-1}$  (2)  $3 \times 10^{-4} \, {}^{\circ}C^{-1}$  (3)  $3 \times 10^{-3} \, {}^{\circ}C^{-1}$  (4)  $3 \times 10^{-2} \, {}^{\circ}C^{-1}$ 

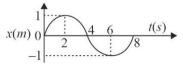
**38.** The net impedance of circuit (as shown in figure) will be:



(1)  $25\Omega$  (2)  $10\sqrt{2}\Omega$  (3)  $15\Omega$  (4)  $5\sqrt{5}\Omega$ 

**39.** For the following logic circuit, the truth table is:




**40.** 10 resistances, each of resistance R are connected in series o a battery of emf E and negligible internal resistance. Then those are connected in parallel to the same battery the current is increased n time. The value of n is:

**(1)** 1000 **(2)** 10 **(3)** 100 **(4)** 

41. Calculate the maximum acceleration of a moving car so that a body lying on the floor of the car remains stationary. The coefficient of static friction between the body and the floor is 0.15 ( $g = 10 \text{ m s}^{-2}0$ ).

(1)  $50 \text{ m s}^{-2}$  (2)  $1.2 \text{ m s}^{-2}$  (3)  $150 \text{ m s}^{-2}$  (4)  $1.5 \text{ m s}^{-2}$ 

42. The x-t graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at t = 2s is:



(1)  $-\frac{\pi^2}{16} \,\mathrm{m \, s^{-2}}$  (2)  $\frac{\pi^2}{8} \,\mathrm{m \, s^{-2}}$  (3)  $-\frac{\pi^2}{8} \,\mathrm{m \, s^{-2}}$  (4)  $\frac{\pi^2}{16} \,\mathrm{m \, s^{-2}}$ 

| 43. | A sa   | tellite is orbitir                                    | ng just abov    | e the surfac                  | ce of the earth              | with period                                           | T. If $d$ is the d                                   | ensity of the                 | e earth and $G$ |
|-----|--------|-------------------------------------------------------|-----------------|-------------------------------|------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------|-----------------|
|     | is the | e universal con                                       | stant of grav   | vitation, the                 | e quantity $\frac{3\pi}{Gd}$ | represents:                                           |                                                      |                               |                 |
|     | (1)    | _                                                     | (2)             | T                             |                              | $T^2$                                                 | (4)                                                  | $T^3$                         |                 |
| 44. |        | ry long conduct at point <i>P</i> for s               |                 |                               |                              |                                                       | to B as shown                                        | n in figure. T                | The magnetic    |
|     |        |                                                       |                 |                               | <i>i</i> ←                   | $R_{P}$                                               |                                                      |                               |                 |
|     |        | $\frac{\mu_0 i}{4R} \left[ 1 - \frac{2}{\pi} \right]$ |                 | the page                      | (2)                          | $\frac{\mu_0 i}{4R}$ point                            |                                                      |                               |                 |
|     | (3)    | $\frac{\mu_0 i}{4R}$ pointed                          | away from       | the page                      | (4)                          | $\frac{\mu_0 i}{4R} \left[ 1 - \frac{2}{\pi} \right]$ | $\begin{bmatrix} 2 \\ \tau \end{bmatrix}$ pointed aw | ay from pag                   | e               |
| 45. |        | e figure shown s are thin)?                           | here, what      | -                             |                              | -                                                     |                                                      | lenses. (As                   | sume that all   |
|     | layer  | s are unity?                                          |                 | $n_1 = 1.5$                   | (3) $(f) \text{ but one}$    | $R_2$ =20cm                                           |                                                      |                               |                 |
|     | (1)    | −50 cm                                                | (2)             | $40 \text{ cm}^{n_2=1.6}$     | (3)                          | –40 cm                                                | (4)                                                  | -100 cm                       |                 |
| 46. |        | thin lenses are<br>laced in contact<br>Infinite       |                 | cai iciiguis                  | equivalent foc               | is convex ai                                          | the combination                                      |                               | e. When they    |
| 47. | A w    | fire carrying a $(2\hat{i} + 3\hat{j} - 4\hat{k})$    | current $I$     | along the                     | positive x-ax                | kis has leng                                          | gth <i>l</i> . It is ke                              | •                             | agnetic field   |
|     |        | $\sqrt{3}IL$                                          |                 |                               |                              |                                                       | (4)                                                  | 5 <i>IL</i>                   |                 |
| 48. | A bu   | llet from a gun                                       | ` ′             |                               | , ,                          |                                                       | , ,                                                  |                               | 4 cm through    |
|     | the b  | block along its                                       | length horiz    | zontally, ve                  | elocity of bull              | et becomes                                            | $\frac{u}{2}$ . Then it for                          | ırther peneti                 | rates into the  |
|     | blocl  | k in the same of                                      |                 |                               |                              |                                                       | J                                                    |                               |                 |
|     | (1)    | 30 cm                                                 | (2)             | 27 cm                         | (3)                          | 24 cm                                                 | (4)                                                  | 28 cm                         |                 |
| 49. | An e   | lectric dipole i                                      | s placed as s   |                               | e figure.                    | P<br>• q                                              |                                                      |                               |                 |
|     | The    | electric potent                                       | tial (in $10^2$ | V) at poin                    | at $P$ due to the            | ne dipole is                                          | $(\in_0 = permit$                                    | tivity of fre                 | e space and     |
|     |        | $\frac{1}{\epsilon_0 = K}$ ):                         | ·               | , -                           |                              | -                                                     |                                                      |                               | -               |
|     | (1)    | $\left(\frac{8}{3}\right)$ qK                         | (2)             | $\left(\frac{3}{8}\right)$ qK | (3)                          | $\left(\frac{5}{8}\right)$ qK                         | (4)                                                  | $\left(\frac{8}{5}\right)$ qK |                 |

50. A horizontal bridge is built across a river. A student standing on the bridge throws a small ball vertically upwards with a velocity  $4 \text{ ms}^{-1}$ . The ball strikes the water surface after 4 s. The height of bridge above water surface is (Take  $g = 10 \text{ ms}^{-2}$ ):

**(1)** 68m

**(2)** 56m

**(3)** 60m

**(4)** 64m

- **51.** Taking stability as the factor, which one of the following represents **correct** relationship?
  - (1)  $TII > TII_3$
- (2)  $TlCl_3 > TlCl$
- (3)  $InI_3 > InI$
- (4)  $AlCl > AlCl_3$

**52.** Identify the product in the following reaction:

- (1) OH Br
- (2) OH
- (3)
- (4) MgBr

- **53.** The given compound
- is an example of \_\_\_\_\_
- (1) vinylic halide
- (2) benzylic halide

CH=CH-CH-CH<sub>2</sub>CH<sub>3</sub>

- (3) aryl halide
- (4) allylic halid
- **54.** In Lassaigne's extract of an organic compound, both nitrogen and sulphur are present, which gives blood red colour with  $Fe^{3+}$  due to the formation of:
  - (1)  $\left[ \text{Fe}(\text{SCN}) \right]^{2+}$

(2)  $\operatorname{Fe_4}\left[\operatorname{Fe}(\operatorname{CN})_6\right]_3 \cdot \operatorname{xH_2O}$ 

(3) NaSCN

- (4)  $\left[ \text{Fe(CN)}_5 \text{ NOS} \right]^{4-}$
- 55. Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**:

**Assertion A:** A reaction can have zero activation energy.

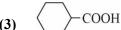
**Reason R:** The minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value, is called activation energy.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) A is false but R is true.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) Both A and R are true and R is NOT the correct explanation of A.
- (4) A is true but R is false.
- 56. The **right** option for the mass of  $CO_2$  produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40)

$$\left[ \text{CaCO}_3 \xrightarrow{1200 \,\text{K}} \text{CaO} + \text{CO}_2 \right]$$

- **(1)** 1.32 g
- (2) 1.12 g
- **(3)** 1.76 g


[B]

**(4)** 2.64 g

**57.** Complete the following reaction







(4) CHC

| 58.        |            | n below are tv              |                |            |                               |                  |              | 2             |                       |                                |                      |
|------------|------------|-----------------------------|----------------|------------|-------------------------------|------------------|--------------|---------------|-----------------------|--------------------------------|----------------------|
|            |            |                             |                | -          | the attachment                |                  | -            | -             | -                     |                                |                      |
|            |            |                             | nen nuo        | cleosi     | de is linked to               | phosphoi         | ous acid a   | at 5' –pc     | sition                | of sugar motes                 | ty, we get           |
|            |            | eotide.<br>e light of the a | above s        | tatem      | ents, choose the              | correct          | answer from  | m the op      | tions 2               | iven below:                    |                      |
|            | (1)        | _                           |                |            | ent II are true.              | (2)              |              | _             | _                     | tatement II ar                 | e true.              |
|            | (3)        | Both Statem                 | nent I a       | and St     | atement II are                | false. (4)       | Stateme      | nt I is tr    | ue but                | Statement II is                | false.               |
| <b>59.</b> | A co       | mpound is for               | rmed b         | y two      | element A and                 | B. The           | element B    | forms c       | ubic cl               | ose packed stru                | acture and           |
|            |            |                             | 1/3 of         | tetral     | nedral voids. If t            | the formu        | la of the co | ompound       | l is A <sub>x</sub> I | B <sub>y</sub> , then the valu | $e 	ext{ of } x + y$ |
|            |            | option.                     |                | (2)        | _                             | (2)              |              |               | (4)                   | 2                              |                      |
|            | (1)        | 2                           |                | (2)        | 5                             | (3)              | 4            |               | (4)                   | 3                              |                      |
| 60.        |            |                             |                |            | an Cu <sup>+</sup> salts in a | _                |              |               |                       |                                |                      |
|            | (1)        | second ionis                |                | _          | by.                           | (2)              | first ioni   |               |                       |                                |                      |
|            | (3)        | enthalpy of a               | atomıza        | ation.     |                               | (4)              | hydratio     | n energy      | •                     |                                |                      |
| 61.        | Matc       | ch List –I with             | List-l         | П          |                               |                  |              |               |                       |                                |                      |
|            |            | List-I                      |                |            | List–II                       | 2                |              |               |                       |                                |                      |
|            | A.         | Coke                        | I.             |            | bon atoms are sp              |                  | sed.         |               |                       |                                |                      |
|            | B.         | Diamond                     | II.            |            | d as a dry lubric             |                  |              |               |                       |                                |                      |
|            | C.         | Fullerene                   | III.           |            | d as a reducing               | _                |              |               |                       |                                |                      |
|            | D.         | Graphite                    | IV.            | _          | e like molecules              |                  |              |               |                       |                                |                      |
|            |            |                             |                |            | n the options gi              |                  |              |               |                       |                                |                      |
|            | (1)        | A–III, B–IV                 |                |            |                               | (2)              | A–II, B–     |               |                       |                                |                      |
|            | (3)        | A–IV, B–I, 0                | C–II, D        | )—III      |                               | (4)              | A–III, B-    | −I, C−IV      | , D–II                |                                |                      |
| <b>62.</b> | Give       | n below are tv              | vo state       | ement      | s: one is labelle             | d as <b>Asse</b> | rtion A an   | d the oth     | er is la              | belled as <b>Reas</b>          | on R:                |
|            |            |                             |                |            | dilute oxygen                 | in diving        | apparatus.   |               |                       |                                |                      |
|            |            | son R: Helium               |                | -          | •                             |                  |              |               |                       |                                |                      |
|            |            | _                           |                |            | ents. choose the              | correct          | answer from  | m the ab      | ove op                | tions given belo               | ow:                  |
|            | (1)        | A is false bu               |                |            |                               |                  |              |               |                       |                                |                      |
|            | (2)        |                             |                |            | d <b>R</b> is the corre       | •                |              |               |                       |                                |                      |
|            | (3)        |                             |                |            | nd <b>R</b> is <b>NOT</b> the | correct 6        | explanation  | of <b>A</b> . |                       |                                |                      |
|            | <b>(4)</b> | <b>A</b> is true but        | <b>R</b> 15 fa | alse.      |                               |                  |              |               |                       |                                |                      |
| <b>63.</b> | Some       | e transquilizer             | s are li       | sted b     | elow. Which or                | e from th        | e followin   | g belong      | s to ba               | rbiturates?                    |                      |
|            | <b>(1)</b> | Veronal                     |                | <b>(2)</b> | Chlordiazepox                 | ide (3)          | Meproba      | ımate         | <b>(4)</b>            | Valium                         |                      |
| 64.        | Whic       | ch of the follow            | wing st        | ateme      | ents are NOT co               | rrect?           |              |               |                       |                                |                      |
|            | A.         |                             | •              |            | ice heavy metal               |                  | metals.      |               |                       |                                |                      |
|            | B.         |                             |                |            | tudy reaction m               |                  |              |               |                       |                                |                      |
|            | C.         | •                           |                |            | e saturated fats              |                  |              |               |                       |                                |                      |
|            | D.         |                             | ond diss       |            | ion enthalpy is               |                  |              | l to a sin    | gle bo                | nd between two                 | atoms of             |
|            | E.         | •                           |                | oxides     | s of metals that              | are more         | active than  | iron.         |                       |                                |                      |
|            | Choo       |                             |                |            | answer from the               |                  |              |               |                       |                                |                      |
|            | (1)        | A, B, C only                |                | (2)        | B, C, D, E onl                | -                | B, D onl     |               | (4)                   | D, E only                      |                      |
|            |            |                             |                |            |                               |                  | -, - 0       | J             | ( - /                 | -,,                            |                      |
|            | ` /        |                             |                | ` '        |                               |                  | 2, 2 011.    | J             | (-)                   | _,,_                           |                      |

| 65. | For                      | a certain reaction,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the rate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k[A]^2[B], w$                                                                | when t                      | he initial co                                                                         | ncentration                                                                               | of A is tripled keeping                  |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|
|     | conc<br>(1)<br>(3)       | entration of B consta<br>increase by a facto<br>increase by a facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or of three.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al rate would:                                                                | (2)<br>(4)                  | decrease by                                                                           | a factor of a                                                                             |                                          |
| 66. | (1)<br>(2)<br>(3)<br>(4) | iron. Oxidation of sulph Hydrolysis of suga Decomposition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nur dioxide i<br>ar catalysed<br>ozone in pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gen and dihyd<br>nto sulphur tr<br>by H <sup>+</sup> ions.<br>esence of nitro | rogen<br>ioxide             | in the presen                                                                         |                                                                                           | oresence of finely divided sof nitrogen. |
| 67. | (1)<br>(2)<br>(3)<br>(4) | Mg plays roles in the daily requirent All enzymes that until The bone in human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | neuromuscu<br>nent of Mg a<br>utilize ATP i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lar function a<br>and Ca in the<br>in phosphate t                             | human<br>ransfe             | body is estir<br>r require Ca a                                                       | nated to be                                                                               |                                          |
| 68. |                          | ght (g) of two moles<br>um hydroxide in pres<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                             |                             | ich is obtaine                                                                        | ed by heating (4)                                                                         | ng sodium ethanoate with 36              |
| 69. | The <b>(1)</b>           | element expected to<br>Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | form larges (2) O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t ion to achiev                                                               | (3)                         | nearest noble<br>F                                                                    | configuration (4)                                                                         | on is:<br>N                              |
| 70. | The (1) (2) (3) (4)      | correct order of ene<br>$\sigma 1s < \sigma^* 1s < \sigma^2 1s <$ | $2s < \sigma^* 2s < \sigma^* 2$ | $(\pi 2p_x = \pi 2p_y) < p_x = \pi 2p_y) < p_z < (\pi 2p_x = \pi 2p_y)$       | $\sigma 2p_z$ $\sigma 2p_y$ | $\pi^* 2p_x = \pi^* 2p_x$ $< (\pi^* 2p_x = \pi^* 2p_x)$ $< (\pi^* 2p_x = \pi^* 2p_x)$ | $(\sigma_y) < \sigma 2p_z$ $(\sigma_y) < \sigma^2 2p_y$ $(\sigma^* 2p_y) < \sigma^* 2p_y$ | 2p <sub>z</sub>                          |
| 71. |                          | Triamminetriaquae Potassium trioxala Diamminechloride Pentaamminecarbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m the follov<br>chromium (latoaluminate<br>onitrito—N—p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ving complexonil complexon (III) chloride (III) chloride (III)                |                             | $-n2p_y$ ) $<$ ( $n$                                                                  | . 2p <sub>x</sub> – π 2j                                                                  | Эу)                                      |
| 72. | A. C. E. Choo (1) (3)    | dipole – dipole for hydrogen bonding dispersion forces. ose the <b>most approp</b> A, C, D, E are corr A, B, C, D are corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reces.  briate answerect. rect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er from the op                                                                | B. D. tions § (2) (4)       | dipole – ind<br>covalent bo<br>given below:<br>B, C, D, E a<br>A, B, C, E a           | luced dipole nding.  are correct.  are correct.                                           |                                          |
| 73. | The (1)                  | number of $\sigma$ bonds, 12, 2, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , π bonds an (2) 11, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                             | f elect (3)                 | rons in pyridi<br>12, 3, 0                                                            | ne respectiv (4)                                                                          | rely are:<br>11, 3, 1                    |

- **74.** Select the **correct** statements from the following:
  - A. Atoms of all elements are composed of two fundamental particles.
  - B. The mass of the electron is  $9.10939 \times 10^{-31}$  kg.
  - C. All the isotopes of a given element show same chemical properties.
  - D. Protons and electrons are collectively known as nucleons.
  - E. Dalton's atomic theory, regarded the atom as a ultimate particle of matter.

Choose the **correct** answer from the options given below:

- (1) B, C and E only
- **(2)**
- A, B and C only (3)
- 3) C, D and E only (4)
- (4) A and E only

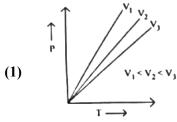
**75.** Identify product (A) in the following reaction:

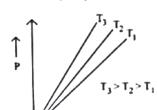
$$\begin{array}{c}
O \\
\hline
O \\
O
\end{array}$$

$$\xrightarrow{Zn-Hg} (A) + 2H_2O$$

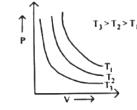
- (1) CH<sub>3</sub> CH
  - OH

**(3)** 

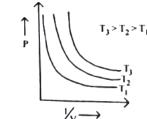

(3)


- (2)
- (4) OH CH<sub>2</sub>OH
- 76. Given below are two statement: One is labelled as **Assertion A** and the other is labelled as **Reason R**.

Assertion A: In Equation  $\Delta_f G = -nFE_{cell}, \ \ value \ of \ \Delta_f G$  depends on n.


Reason R:  $E_{cell}$  is an intensive property and  $\Delta_f G$  is an extensive property.

- (1) A is false but R is true
- (2) Both A and R are true and R is the correct explanation of A
- (3) Both A and R are true and R is NOT the correct explanation of A.
- (4) A is true but R is false
- 77. Which amongst the following options is correct graphical representative of Boyle's Law?














| <b>78.</b> | The   | relation between              | $n_{m}, (n_{m})$ | =the number of             | permiss | ible values of mag | gnetic qu            | antum number (m)) f     | or a |
|------------|-------|-------------------------------|------------------|----------------------------|---------|--------------------|----------------------|-------------------------|------|
|            | giver | n value of azimut             | hal quant        | um number $(\ell)$ ,       | is:     |                    |                      |                         |      |
|            | (1)   | $\boldsymbol{n}_m = \ell + 2$ | (2)              | $\ell = \frac{n_m - 1}{2}$ | (3)     | $\ell = 2n_m + 1$  | (4)                  | $n_{m} = 2\ell^{2} + 1$ |      |
| 79.        |       | conductivity of co            |                  |                            |         |                    | cm <sup>-1</sup> and | the resistance of the   | cell |

(3)  $3.28 \,\mathrm{cm}^{-1}$ 

**80.** Consider the following reaction and identify the product (P)

(1)  $3.34 \,\mathrm{cm}^{-1}$  (2)  $1.34 \,\mathrm{cm}^{-1}$ 

$$CH_3 - CH - CH - CH_3 \xrightarrow{HBr} product (P) 3 - Methylbutan - 2 ol  $CH_3 OH$$$

CH<sub>3</sub>

$$CH_3 = C - CH_2Br$$

$$CH_3 = CH_3$$

$$CH_3 = CH_3$$

$$CH_3 = CH - CH_3$$
(2)
$$CH_3 - C - CH_2 - CH_3$$

$$CH_3 = CH_3$$

$$CH_3 = CH_3 - CH_3$$
(4)
$$CH_3 - CH_3 - CH_3$$

$$CH_3 = CH_3 - CH_3$$

**81.** Which amongst the following molecules on polymerization produces neoprene?

CH<sub>3</sub>
(1) 
$$H_2C = C - CH = CH_2$$
(2)  $H_2C = CH - CH = CH_2$ 
(3)  $H_2C = C - CH = CH_2$ 
(4)  $H_2C = CH - C = CH$ 

**82.** Amongst the following, the total number of species NOT having eight electrons around central atom in its outer most shell, is:

NH<sub>3</sub>, AlCl<sub>3</sub>, BeCl<sub>2</sub>, CCl<sub>4</sub>, PCl<sub>5</sub>

- **(1)** 1
- **(2)** 3
- **(3)** 2
- **(4)** 4

(4)  $1.26 \,\mathrm{cm}^{-1}$ 

83. Amongst the given options which of the following molecules/ion acts as a Lewis acid?

- (1) OH<sup>-</sup>
- (2) NH<sub>3</sub>
- (3) H<sub>2</sub>O
- (4) BF<sub>3</sub>

84. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

**Assertion A:** Metallic sodium dissolved in liquid ammonia giving a deep blue solution, which is paramagnetic.

**Reason R:** The deep blue solution is due to the formation of amide.

- (1) A is false but R is true
- (2) Both A and R are true and R is the correct explanation of A
- (3) Both A and R are true but R is NOT the correct explanation of A
- (4) A is true but R is false

- **85.** Which of the following reaction will NOT give primary amine as the product?
  - (1)  $CH_3CONH_2 \xrightarrow{(i) LiAlH_4} Product$
- (2)  $CH_3CONH_2 \xrightarrow{Br_2/KOH} Product$
- (3)  $CH_3CN \xrightarrow{(i) LiAlH_4} Product$
- (4)  $CH_3NC \xrightarrow{(i) LiAlH_4} Product$

| SECTION - B CHEMISTRY |  |
|-----------------------|--|
|-----------------------|--|

$$VO_4^{3-}$$
 salts.

E. CrO is basic but Cr<sub>2</sub>O<sub>3</sub> is amphoteric.

Choose the **correct** answer from the options given below:

- (1) B and C only
- (2) A and E only
- (3) B and D only
- (4) C and D only

**87.** Consider the following reaction:

$$CH_2$$
-O- $A+B$ 

Identify products A and B.

(1) 
$$A = \langle CH_3 \text{ and } B = \langle L \rangle - I$$

(2) 
$$A = \langle CH_3 \text{ and } B = \langle CH_3 \text{ OH } CH_3 \text{ OH }$$

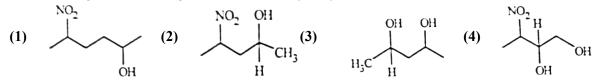
(3) 
$$A = \bigcirc CH_2OH \text{ and } B = \bigcirc I$$

(4) 
$$A = \langle CH_2 I \text{ and } B = \langle CH_2 I \text{ of } B \rangle$$

- **88.** Which amongst the following options is the **correct** relation between change in enthalpy and change in internal energy?
  - (1)  $\Delta H + \Delta U = \Delta nR$

(2)  $\Delta H = \Delta U - \Delta n_g RT$ 

(3)  $\Delta H = \Delta U + \Delta n_g RT$ 


- (4)  $\Delta H \Delta U = \Delta nRT$
- 89. What fraction of one edge centred octahedral void lies in one unit cell of fcc?
  - (1)  $\frac{1}{12}$
- (2)  $\frac{1}{2}$
- (3)  $\frac{1}{3}$
- (4)  $\frac{1}{4}$

Statement I: The nutrient deficient water bodies lead to eutrophication.

**Statement II:** Eutrophication leads to decrease in the level of oxygen in the water bodies.

In the light of the above statements, choose the **correct** answer from the option given below:

- Statement I is incorrect but Statement II is true **(1)**
- Both Statement I and Statement II are true **(2)**
- Both Statement I and Statement II are false **(3)**
- **(4)** Statement I is correct but Statement II is false
- 91. Which amongst the following will be most readily dehydrated under acidic conditions?



92. Match List-I with List-II.

## List-I (Oxoacids of sulphur)

List-II (Bonds)

- A. Peroxodisulphuric acid
- В. Sulphuric acid
- C. Pyrosulphuric acid
- Sulphurous acid D.

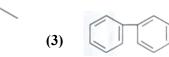
- Two S OH, Four S = O, One S O SI.
- II. Two S - OH, One S = O
- III. Two S - OH, Four S = O, One S - O - O - STwo S - OH, Two S = O
- IV.

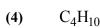
Choose the correct answer from the options given below:

A-III, B-IV, C-II, D-I **(1)** 

A-I, B-III, C-II, D-IV **(2)** 

A-III, B-IV, C-I, D-II **(3)** 


- A-I, B-III, C-IV, D-II **(4)**
- 93. Identify the major product obtained in the following reaction:


Identify the final product [D] obtained in the following sequence of reactions. 94.

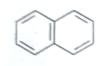
$$CH_3CHO \xrightarrow{i)LiAIH_4} [A] \xrightarrow{H_2SO_4} [B]$$

$$\xrightarrow{\text{HBr}} [C] \xrightarrow{\text{Na/dry ether}} [D]$$

$$(1) \qquad HC \equiv C^{\Theta} Na \qquad (2)$$






| 95. | The reactions that does NOT take place in a blast furnace between 900 K to 1500 K temperature range |
|-----|-----------------------------------------------------------------------------------------------------|
|     | during extraction of iron is:                                                                       |

- **(1)**  $CaO + SiO_2 \rightarrow CaSiO_3$
- $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$ **(2)**
- $FeO + CO \rightarrow Fe + CO_2$ **(3)**
- $C + CO_2 \rightarrow 2CO$ **(4)**

- Pumice stone is an example of: 96.
  - foam
- **(3)** gel
- **(4)** solid sol

- 97. Which complex compound is mot stable?
  - $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]_2(\operatorname{SO}_4)_3$
- (2)  $\left[ \text{Co}(\text{NH}_3)_4(\text{H}_2\text{O})\text{Br} \right] (\text{NO}_3)_2$ (4)  $\left[ \text{CoCl}_2(\text{en})_2 \right] \text{NO}_3$
- $\left[\operatorname{Co}(\operatorname{NH}_3)_3(\operatorname{NO}_3)_3\right]$
- 98. Consider the following compounds/species:

i.



ii.

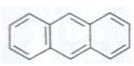


iii.



iv.




v.



vi.



vii.



The number of compound/species which obey Huckel's rule is

- **(1)**
- **(2)** 4
- **(3)**

- **(4)** 2
- The equilibrium concentrations of the species in the reaction  $A+B \longrightarrow C+D$  are 2, 3, 10 and 6 mol 99.  $L^{-1}$ , respectively at 300 K.  $\Delta G^{\circ}$  for the reaction is (R = 2 cal / mol k)
  - (1) -13.73 cal
- **(2)** 1372.60 cal
- **(3)** -137.26 cal
- **(4)** -1381.80 cal

**100.** On balancing the given redox reaction,

$$aCr_2O_7^{2-} + bSO_3^{2-}(aq) + cH^+(aq) \rightarrow 2aCr^{3+}(aq) + bSO_4^{2-}(aq) + \frac{c}{2}H_2O(1)$$

The coefficients a, b and c are found to be respectively.

- 8,1,3
- **(2)** 1, 3, 8
- 3, 8, 1
- **(4)** 1, 8, 3

| SE                                                                                                                                                                                                                                                                               | CTIO                     | N - A                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BI                                                                                                     | OLOG                                             | Y                                                                   |                        | BOTANY                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------|-------------------------------------------------------------|
| 01.                                                                                                                                                                                                                                                                              | Asser<br>Reaso           | ction A: The first ston R: Protonema de                                                            | age of gevelops statement R is correct correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gametophyte in the directly from sporents, choose the moorrect.  and R is the correct but R is NOT the | e life cy<br>res pro-<br>ost app                 | ycle of moss is produced in capsule. ropriate answer fanation of A. | rotonema<br>from the o | abelled as <b>Reason R</b> : a stage.  Options given below: |
| 02.                                                                                                                                                                                                                                                                              | (1)<br>(2)<br>(3)<br>(4) | lose does not form It breakes down w It is a disaccharide It is a helical mole It does not contain | hen iod<br>e.<br>cule.<br>comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | line reacts with it.                                                                                   | ce can                                           |                                                                     |                        |                                                             |
| .03.                                                                                                                                                                                                                                                                             | Which                    | h micronutrient is r copper                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for splitting of wa<br>manganese                                                                       | ter mo                                           | lecule during pho<br>molybdenum                                     | otosyntho (4)          | esis?<br>magnesium                                          |
| <b>04</b> .                                                                                                                                                                                                                                                                      | ` ′                      | essed Sequence Tag<br>Certain important<br>All genes that are<br>All genes whether                 | s (EST)<br>express<br>express                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s) refers to:<br>sed genes.<br>ed as proteins.                                                         | (2)                                              | All genes that a                                                    |                        | Č                                                           |
| 05.                                                                                                                                                                                                                                                                              | The th                   | hickness of ozone is                                                                               | n a colu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ımn of air in the at                                                                                   | mosph                                            | ere is measured i                                                   | n terms o              | of:                                                         |
|                                                                                                                                                                                                                                                                                  | <b>(1)</b>               | Kilohase                                                                                           | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dobson units                                                                                           | (3)                                              | Decibels                                                            | (4)                    | Decameter                                                   |
| 06.                                                                                                                                                                                                                                                                              | Asser<br>Rease<br>conve  | rtion A : ATP is us                                                                                | ed at two sed in of the control of t | converting glucose that into fructose-1 ents, choose the conditional R is the correct ents.            | sis.<br>e into g<br>-6-dip<br>rrect ar<br>xplana | clucose-6-phosphohosphate. Inswer from the option of A.             | ate and s              | belled as <b>Reason R:</b> econd ATP is used in ven below   |
| 07.                                                                                                                                                                                                                                                                              | Upon (1) (3)             | exposure to UV ra<br>Bright orange colo<br>Bright blue colour                                      | our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DNA stained with                                                                                       | (2)<br>(4)                                       | ium bromide will<br>Bright red colou<br>Bright yellow co            | ır                     |                                                             |
| <ul> <li>108. Among The Evil Quartet'. which one is considered the most important cause driving extinct</li> <li>(1) Co-extinctions</li> <li>(2) Habitat loss and fragmentation</li> <li>(3) Over exploitation for economic gain</li> <li>(4) Alien species invasions</li> </ul> |                          |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                  |                                                                     |                        | •                                                           |
| 109.                                                                                                                                                                                                                                                                             | Which                    | h of the following s<br>Telophase                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f meiosis involves<br>Metaphase I                                                                      | divisio (3)                                      | on of centromere<br>Metaphase II                                    | ? (4)                  | Anaphase II                                                 |
| 110.                                                                                                                                                                                                                                                                             |                          | h hormone promote<br>2, 4-D                                                                        | es interr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                      | ` ′                                              | -                                                                   | ` ´                    | Ethylene                                                    |

| 111. | Frequ        | uency of recombina     | ition be          | tween gene pairs of   | n same     | e chromosome as a       | measu     | re of the distance       |
|------|--------------|------------------------|-------------------|-----------------------|------------|-------------------------|-----------|--------------------------|
|      | betw         | een genes to map th    | neir pos          | sition on chromoso    | me, wa     | as used for the first t | time b    | y                        |
|      | (1)          | Henking                |                   |                       | <b>(2)</b> | Thomas Hunt Mo          | rgan      |                          |
|      | (3)          | Sutton and Bover       | i                 |                       | <b>(4)</b> | Alfred Sturtevant       |           |                          |
| 112. | How<br>cycle | -                      | ADPH <sub>2</sub> | are required for th   | e synth    | esis of one molecul     | e of G    | lucose during Calvin     |
|      | (1)          | 18 ATP and 16 N        | ADPH              | 2                     | (2)        | 12 ATP and 12 N         | ADPH      | [2                       |
|      | (3)          | 18 ATP and 12 N        |                   |                       | (4)        | 12 ATP and 16 N.        |           |                          |
| 113. | Wha          | t is the role of RNA   | bolvn             | nerase III in the pro | ocess of   | f transcription in Eu   | karvot    | tes?                     |
|      | (1)          | Transcription of o     |                   | _                     |            | r                       | J         |                          |
|      | (2)          | •                      | •                 | (28S, 18S and 5.8S    | S)         |                         |           |                          |
|      | (3)          | Transcription of t     | RNA, :            | srRNA and snRN        | ΙA         |                         |           |                          |
|      | <b>(4)</b>   | Transcription of p     | recurs            | or of mRNA            |            |                         |           |                          |
| 114. | Fami         | ly Fabaceae differs    | from S            | Solanaceae and Lil    | iaceae.    | With respect to the     | stame     | ns, pick out the         |
|      | chara        | acteristics specific t | o famil           | y Fabaceae but no     | t found    | in Solanaceae or L      | iliacea   | e.                       |
|      | <b>(1)</b>   | Epiphyllous and I      |                   |                       |            |                         |           |                          |
|      | <b>(2)</b>   | Diadelphous and        |                   |                       |            |                         |           |                          |
|      | (3)          | Polyadelphous an       |                   |                       |            |                         |           |                          |
|      | <b>(4)</b>   | Monoadelphous a        | nd Mo             | nothecous anthers     |            |                         |           |                          |
| 115. |              |                        |                   |                       |            |                         | _         | prophase I in meiosis?   |
|      | (1)          | Diakinesis             | (2)               | Zygotene              | (3)        | Pachytene               | (4)       | Diplotene                |
| 116. |              | e equation             |                   |                       |            |                         |           |                          |
|      |              | -R = NPP               |                   |                       |            |                         |           |                          |
|      |              | is Gross Primary P     |                   | •                     |            |                         |           |                          |
|      |              | is Net Primary Pro     | ductivi           | ty                    |            |                         |           |                          |
|      | R her (1)    | Reproductive allo      | cation            |                       | (2)        | Photosynthetically      | v activ   | e radiation              |
|      | (3)          | Respiratory quoti-     |                   |                       | (4)        | Respiratory loss        | y activ   | c radiation              |
| 117. |              | reaction centre in P   |                   | s an absorption ma    |            | •                       |           |                          |
| 117. | (I)          | 780 nm                 | (2)               | 680 nm                | (3)        | 700 nm                  | (4)       | 660 nm                   |
| 118. |              | quivocal proof that    | ` ′               |                       | ` ′        |                         | (-)       |                          |
| 110. | (1)          | Wilkins and Fran       |                   | the genetic mater     | (2)        | Frederick Griffith      |           |                          |
|      | (3)          | Alfred Flershey a      |                   | tha Chase             | (4)        | Avery, Macleoid         |           | cCarthy                  |
| 119. | ` ′          | ,                      |                   |                       | ` ′        | -                       |           | stening the maturity     |
| 117. | _            | d, that leads to earl  |                   |                       | c on ju    | veime conners neip      | 5 111 110 | sterning the maturity    |
|      | (1)          | Abscisic Acid          | <i>y</i> 2004     | p10 <b>4.00</b>       | (2)        | lmlole-3-butyric A      | Acid      |                          |
|      | (3)          | Gibberellic Acid       |                   |                       | (4)        | Zeatin                  |           |                          |
| 120. | Wha          | t is the function of t | tassels           | in the com cob?       |            |                         |           |                          |
|      | (1)          | To protect seeds       |                   |                       | (2)        | To attract insects      |           |                          |
|      | (3)          | To trap pollen gra     | ins               |                       | (4)        | To disperse poller      | n grain   | S                        |
| 121. | Duri         | ng the purification    | process           | for recombinant I     | NA te      | chnology, addition      | of chil   | led ethanol precipitates |
|      | out:         |                        | -                 |                       |            |                         |           |                          |
|      | (1)          | Polysaccharides        | (2)               | RNA                   | (3)        | DNA                     | (4)       | Histones                 |

| 122. | In an            | giosperm, the haplo                              | id, dip    | oloid and triploid s  | tructure   | es of a fertilized em | bryo sa    | ac sequentially are:   |
|------|------------------|--------------------------------------------------|------------|-----------------------|------------|-----------------------|------------|------------------------|
|      | (1)              | Synergids, antipod                               | lals an    | d Polar nuclei        |            |                       | -          |                        |
|      | (2)              | Synergids, Primar                                | y endo     | sperm nucleus and     | d zygote   | e                     |            |                        |
|      | (3)              | Antipodals, synerg                               | gids, a    | nd primary endosp     | erm nu     | cleus                 |            |                        |
|      | <b>(4)</b>       | Synergids, Zygote                                | and P      | rimary endosperm      | nucleu     | S                     |            |                        |
| 123. | Large            | e, colourful fragrant                            | flowe      | rs with nectar are    | seen in:   |                       |            |                        |
|      | <b>(1)</b>       | wind pollinated pl                               | ants       |                       | (2)        | insect pollinated     | plants     |                        |
|      | <b>(3)</b>       | bird pollinated pla                              | nts        |                       | <b>(4)</b> | bat pollinated pla    | nts        |                        |
| 124. | In tis           | sue culture experim                              | ents, l    | eaf mesophyll cell    | s are pu   | it in a culture medi  | um to f    | form callus. This      |
|      | pheno            | omenon may be call                               | led us:    |                       |            |                       |            |                        |
|      | <b>(1)</b>       | Senescence                                       | <b>(2)</b> | Differentiation       | (3)        | Dedifferentiation     | <b>(4)</b> | Dedifferentiation      |
| 125. | Give             | below are two state                              | ments      | :                     |            |                       |            |                        |
|      | State            | ment I: The forces                               | genera     | ated by transpiration | on can l   | ift a xylem-sized o   | olumn      | of water over 130      |
|      | meter            | rs height.                                       |            |                       |            |                       |            |                        |
|      |                  | ment II: Transpira                               |            |                       |            | •                     |            |                        |
|      |                  | -                                                |            |                       |            |                       | rom th     | e options given below: |
|      | (1)              | Statement I is inc                               |            |                       |            | ct.                   |            |                        |
|      | (2)              | Both Statement I                                 |            |                       |            |                       |            |                        |
|      | (3)<br>(4)       | Both Statement I Statement I is con              |            |                       |            |                       |            |                        |
| 100  |                  |                                                  |            |                       |            |                       |            | TO 1 T 1 1 1 1         |
| 126. |                  | iistoric Convention                              | on Bio     | ological Diversity,   | The E      | arth Summit' was I    | neld in    | Rio de Janeiro in the  |
|      | year: <b>(1)</b> | 2002                                             | (2)        | 1985                  | (3)        | 1992                  | (4)        | 1986                   |
| 105  | ` ′              |                                                  |            |                       | ` ′        |                       | ` ′        |                        |
| 127. | used:            | ne gun method used                               | to int     | roduced allen DN      | A into r   | iost cells, micro pa  | rticles    | ofmetal are            |
|      | (1)              | Silver                                           | (2)        | Copper                | (3)        | Zinc                  | (4)        | Tungsten or gold       |
| 130  | ` ′              |                                                  |            |                       | , ,        |                       |            |                        |
| 128. |                  | ement and accumula<br>ined by:                   | ation o    | i ions across a mei   | morane     | against their conce   | entratio   | on gradient can be     |
|      | (1)              | Active Transport                                 |            |                       | (2)        | Osmosis               |            |                        |
|      | (3)              | Facilitated Diffusi                              | on         |                       | (4)        | Passive Transpor      | t          |                        |
| 129. | ` ′              |                                                  |            | in:                   | (.)        | Tussive Transpor      |            |                        |
| 129. | (1)              | e placentation is obs<br>China rose, Petuni      |            |                       | (2)        | Mustard, Cucumb       | har and    | Drimrose               |
|      | (3)              | China rose, Beans                                |            |                       | (4)        | Tomato, Dianthus      |            |                        |
| 120  |                  |                                                  |            |                       | (4)        | Tomato, Diamina       | j una 1    | cu                     |
| 130. | A.               | ify the <b>correct</b> state  Detrivores perform |            |                       |            |                       |            |                        |
|      | A.<br>B.         | *                                                | _          |                       | crobes     | during mineralizati   | ion        |                        |
|      | Б.<br>С.         |                                                  |            |                       |            |                       |            | by a process called    |
|      | <b>C</b> .       | leaching                                         | S          | marchio go down       | 11100 011  | c con una got proof   | riaica     | oj a process canea     |
|      | D.               | The detritus food                                | chain t    | pegins with living    | organis    | ms.                   |            |                        |
|      | E.               |                                                  |            | -                     | -          | icles by a process c  | alled c    | atabolism.             |
|      | Choo             | se the <b>correct</b> answ                       |            |                       | _          |                       |            |                        |
|      | <b>(1)</b>       | D, E, A only                                     | <b>(2)</b> | A, B, C only          | (3)        | B, C, D only          | <b>(4)</b> | C, D, E only           |
|      |                  |                                                  |            |                       |            |                       |            |                        |

|      | <b>(1)</b>   | G <sub>2</sub> phase                 | (2)                                | M phase                      | (3)        | S phase             | (4)      | G <sub>1</sub> phase                     |
|------|--------------|--------------------------------------|------------------------------------|------------------------------|------------|---------------------|----------|------------------------------------------|
| 132. | Give         | n below are two s                    | tatement                           | s:                           |            |                     |          |                                          |
|      | State        | e <b>ment I :</b> Endarch            | and exa                            | rch are the terms of         | ten us     | ed for describing t | he posi  | tion of secondary xylem                  |
|      | in the       | e plant body.                        |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    | n is the most comm           |            | •                   |          |                                          |
|      | In th        | -                                    |                                    | ents, choose the co          |            | nswer from the op   | tions gi | ven below:                               |
|      | (1)          |                                      |                                    | but Statement II is          |            |                     |          |                                          |
|      | (2)          |                                      |                                    | tatement II are true         |            |                     |          |                                          |
|      | (3)          |                                      |                                    | tatement II are fals         |            |                     |          |                                          |
|      | (4)          | Statement 1 is c                     | orrect bu                          | at <b>Statement II</b> is f  | alse       |                     |          |                                          |
| 133. | The j        | phenomenon of pl                     | _                                  |                              |            |                     |          |                                          |
|      | <b>(1)</b>   | -                                    |                                    | ecting a single chara        |            |                     |          |                                          |
|      | <b>(2)</b>   | •                                    |                                    | es of a single gene of       |            |                     |          |                                          |
|      | (3)          | -                                    |                                    | each of the two gen          |            |                     | ait.     |                                          |
|      | <b>(4)</b>   | a single gene aff                    | ecting m                           | ultiple phenotypic           | expres     | ssion.              |          |                                          |
| 134. | Ident        | tify the pair of hete                | erosporo                           | us pteridophytes an          | nong t     | he following:       |          |                                          |
|      | <b>(1)</b>   | Equisetum and S                      |                                    |                              | <b>(2)</b> | Lycopodium and      | Selagi   | nella                                    |
|      | (3)          | Selaginella and                      | Salvinia                           |                              | <b>(4)</b> | Psilotum and Sal    | lvinia   |                                          |
| 135. | Asse<br>Reas | rtion A: Late woo<br>on R: Cambium i | od has fe<br>s less ac<br>e statem | wer xylary element           | s with     | narrow vessels.     |          | abelled as <b>Reason R</b> :  ven below: |
|      | (2)          |                                      |                                    | nd <b>R</b> is the correct e | xplana     | ation of <b>A</b> . |          |                                          |
|      | (3)          |                                      |                                    | It <b>R</b> is NOT the cor   | -          |                     |          |                                          |
|      | (4)          | <b>A</b> is true but <b>R</b> i      |                                    |                              |            | <b>r</b>            |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |
|      |              |                                      |                                    |                              |            |                     |          |                                          |

**131.** Among eukaryotic, replication of DNA takes place in:

| SECTION - B | BIOLOGY | BOTANY |
|-------------|---------|--------|

- **136.** Identify the correct statements:
  - **A.** Lenticels are the lens-shaped openings permitting the exchange of gases.
  - **B.** Bark formed early in the season is called hard bark.
  - **C.** Dark is a technical term that refers to all tissues exterior to vascular cambium.
  - **D.** Bark refers to periderm and secondary phloem.
  - **E.** Phellogen is single-layered in thickness.

Choose the correct answer from the options given below:

- (1) B and C only
- (2) B, C and E only
- (3) A and D only
- (4) A, B and D only

**137.** Match List I with List II:

| List I |                      | List II                                             |  |  |
|--------|----------------------|-----------------------------------------------------|--|--|
| A.     | M Phase              | I. Proteins are synthesized                         |  |  |
| B.     | G <sub>2</sub> Phase | II. Inactive phase                                  |  |  |
| C.     | Quiescent state      | III. Interval between mitosis and initiation of DNA |  |  |
| D.     | G <sub>1</sub> Phase | IV. Equational division                             |  |  |

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I. D-III

(2) A-III, B-II, C-IV, D-I

(3) A-IV. B-II, C-I, D-III

- (4) A-IV, B-I, C-II, D-III
- **138.** Given below are two statements: One is labelled as **Assertion A** and the other is labelled as **Reason R**:

**Assertion A**: In gymnosperms the pollen grains are released from the microsporangium and carried by air currents.

**Reason R:** Air currents carry the pollen grains to the mouth of the archegonia where the male gametes are discharged and pollen tube is not formed.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) A is false but R is true.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) Both A and R are true but R is NOT the correct explanation of A.
- (4) A is true but R is false.
- 139. Match List I with List II:

|    | List I     | List II                                 |  |
|----|------------|-----------------------------------------|--|
| A. | Iron       | I. Synthesis of auxin                   |  |
| B. | Zin        | II. Component of nitrate reductase      |  |
| C. | Boron      | III. Activator of catalase              |  |
| D. | Molybdenum | IV. Cell elongation and differentiation |  |

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I, D-III

**(2)** A-III, B-II, C-I, D-IV

(3) A-II, B-III, C-IV, D-I

- (4) A-III, B-I, C-IV, D-II
- **140.** Which of the following combinations is required for chemiosmosis?
  - (1) proton pump, electron gradient, NADP synthase
  - (2) membrane, proton pump, proton gradient, ATP synthase
  - (3) membrane, proton pump, proton gradient, NADP synthase
  - (4) proton pump, electron gradient, ATP synthase

- **141.** Main steps in the formation of Recombinant DNA are given below. Arrange these steps in a correct sequence.
  - **A.** Insertion of recombinant DNA into the host cell.
  - **B.** Cutting of DNA at specific location by restriction enzyme.
  - **C.** Isolation of desired DNA fragment.
  - **D.** Amplification of gene of interest using PCR.

Choose the correct answer from the options given below:

- (1) B, D, A, C
- (2) B, C, D, A
- (3) C, A, B, D
- (4) C, B, D, A

- **142.** Which one of the following statements is **NOT** correct?
  - (1) The amount of some toxic substances of industrial waste water increases in the organisms at successive trophic levels.
  - (2) The micro-organisms involved in biodegradation of organic matter in a sewage polluted water body consume a lot of oxygen causing the death of aquatic organisms.
  - (3) Algal blooms caused by excess of organic matter in water improve water quality and promote fisheries.
  - (4) Water hyacinth grows abundantly in eutrophic water bodies and leads to an imbalance in the ecosystem dynamics of the water body.
- 143. Which of the following statements are correct about Klinefelter's Syndrome?
  - **A.** This disorder was first described by Langdon Don (1866).
  - **B.** Such an individual has overall masculine development. However, the feminine development is also expressed.
  - **C.** The affected individual is short statured.
  - **D.** Physical, psychomotor and mental development is retarded.
  - **E.** Such individuals are sterile.

Choose the **correct** answer from the options given below:

- (1) A and E only
- (2) A and B only
- (3) C and D only
- (4) B and E only

144. Match List I with List II:

| List I (Interaction) | List II (Species A and B) |
|----------------------|---------------------------|
| A. Mutualism         | I. +A, O(B)               |
| B. Commensalism      | II. –A, O(B)              |
| C. Amensalism        | III. +A, –(B)             |
| <b>D.</b> Parasitism | <b>IV.</b> +A, +(B)       |

Choose the **correct** answer from the options given below:

**(1)** A-III, B-I, C-IV, D-II

**(2)** A-IV, B-II, C-I, D-III

(3) A-IV, B-I, C-II, D-III

- (4) A-IV, B-III, C-I, D-II
- 145. Given below are two statements: One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**. **Assertion (A):** A flower is defined as modified shoot apical meristem change to floral meristem.

**Reason (R):** Internode of the shoot gets condensed to produce different floral appendages laterally at successive nodes instead of leaves. In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Assertion is false but Reason is true.
- (2) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (3) Both Assertion and Reason are true but Reason is Not the correct explanation of Assertion.
- (4) Assertion is true but Reason is false.

- **146.** How many different proteins does the ribosome consist of?
  - **(1)** 20
- **(2)** 80
- **(3)** 60
- **(4)** 40

147. Match List I with List II:

| List I              | List II                                     |
|---------------------|---------------------------------------------|
| A. Cohesion         | I. More attraction in liquid phase          |
| <b>B.</b> Adhesion  | II. Mutual attraction among water molecules |
| C. Surface tension  | III. Water loss in liquid phase             |
| <b>D.</b> Guttation | IV. Attraction towards polar surfaces       |

Choose the **correct** answer from the options given below:

(1) A-II, B-I, C-IV, D-III

(2) A-II, B-IV, C-I, D-III

(3) A-IV, B-III, C-II, D-I

(4) A-III, B-I, C-IV, D-II

148. Match List I with List II:

| List I                              | List II                        |
|-------------------------------------|--------------------------------|
| <b>A.</b> Oxidative decarboxylation | I. Citrate synthase            |
| <b>B.</b> Glycolysis                | II. Pyruvate dehydrogenase     |
| <b>C.</b> Oxidative phosphorylation | III. Electron transport system |
| <b>D.</b> Tricarboxylic acid cycle  | IV. Emp pathway                |

Choose the **correct** answer from the options given below:

(1) A-II, B-IV, C-III, D-I

(2) A-III, B-IV, C-II, D-I

(3) A-II, B-IV, C-I, D-III

- (4) A-III, B-I, C-II, D-IV
- **149.** Melonate inhibits the growth of pathogenic bacteria by inhibiting the activity of:
  - (1) Dinitrogenase

(2) Succinic dehydrogenase

(3) Amylase

- (4) Lipase
- **150.** Given below are two statements:

**Statement I:** Gause's 'Competitive exclusion principle' states that two closely related species competing for the same resources cannot co-exist indefinitely and competitively inferior one will be eliminated eventually.

**Statement II:** In general, carnivores are more adversely affected by competition than herbivores. In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is incorrect but statement II is true
- (2) Both statement I and Statement II are true
- (3) Both statement I and Statement II are false
- (4) Statement I is correct but Statement II is false

| SECTION - A | BIOLOGY | ZOOLOGY |
|-------------|---------|---------|

**151.** Match List I with List II.

List I List II A. Gene 'a' I. β-galactosidase В Gene 'v' II. Transacetylase Gene 'i' C. III. Permease D. Gene 'z' IV. Repressor protein

Choose the correct answer from the options given below:

(1) A-III, B-I, C-IV. D-II

(2) A-II, B-I, C-IV. D-III

(3) A-II, B-III, C-IV. D-I

- (4) A-III, B-IV, C-I. D-II
- **152.** Given below are two statements:

**Statement I:** Ligaments are dense irregular tissue.

**Statement II:** Cartilage is dense regular tissue.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true.
- (2) Both Statement I and Statement II are true.
- (3) Both Statement I and Statement II are false.
- (4) Statement I is true but Statement II is false.
- 153. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

**Assertion A:** Amniocentesis for sex determination is one of the strategies of Reproductive and Child Health Care Programme.

**Reason R:** Ban on amniocentesis checks increasing menace of female foeticide.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is false but R is true.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) Both A and R are true and R is NOT the correct explanation of A.
- (4) A is true but R is false
- 154. Match List I with List II.

| List I |                       |      | List II                                        |
|--------|-----------------------|------|------------------------------------------------|
| A.     | Cartilaginous Joint   | I.   | Between flat skull bones                       |
| B.     | Ball and Socket Joint | II.  | Between adjacent vertebrae in vertebral column |
| C.     | Fibrous Joint         | III. | Between carpal and metacarpal of thumb         |
| D.     | Saddle Joint          | IV.  | Between Humerus and Pectoral girdle            |

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-III. D-I

(2) A-III, B-I, C-II. D-IV

(3) A-II, B-IV, C-I. D-III

- (4) A-I, B-IV, C-III. D-II
- **155.** Given below are two statements

**Statement I:** Vas deferens receives a duct from seminal vesicle and opens into urethra as the ejaculatory duct.

**Statement II:** The cavity of the cervix is called cervical canal which along with vagina forms birth canal. In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I incorrect but statement II is true (2) Both Statement I and Statement II are true.
- (3) Both Statement I and Statement II are false. (4) Statement I is correct but Statement II is false.

- 156. Which one of the following techniques does not serve the purpose of early diagnosis of a disease for its early treatment?
  (1) Enzyme Linked Immuno-Sorbent Assay (ELISA) technique
  (2) Recombinant DNA Technology
  (3) Serum and Urin analysis
  (4) Polymerase Chain Reaction (PCR) technique
- **157.** Which one of the following common sexually transmitted diseases is completely curable when detected early and treated properly?

(1) HIV Infection

(2) Genital herpes

(3) Gonorrhoea

(4) Hepatitis-B

**158.** Which of the following is not a cloning vector?

(1) Probe

**(2)** BAC

**(3)** YAC

(4) Pbr322

159. Match List I with List II.

| List I |     |      | List II       |
|--------|-----|------|---------------|
| A.     | CCK | I.   | Kidney        |
| B.     | GIP | II.  | Heart         |
| C.     | ANF | III. | Gastric gland |
| D.     | ADH | IV.  | Pancreas      |

Choose the correct answer from the options given below:

(1) A-IV, B-II, C-III, D-I

(2) A-IV, B-III, C-II, D-I

(3) A-III, B-II, C-IV, D-I

(4) A-II, B-IV, C-I, D-III

**160.** Which of the following are NOT considered as the part of endomembrane system?

A. Mitochondria

B. Chloroplasts

C. Chloroplasts

**D.** Golgi complex

**E.** Peroxisomes

Choose the most appropriate answer from the options given below:

(1) A D and E only

(2) B and D only

(3) A C and E only

(4) A and D only

**161.** Match List I with List II.

|    | List I      |      | List II             |
|----|-------------|------|---------------------|
| A. | Taenia      | I.   | Nephridia           |
| B. | Paramoecium | II.  | Contractile vacuole |
| C. | Periplaneta | III. | Flame cells         |
| D. | Pheretima   | IV.  | Urecose gland       |

Choose the correct answer from the options given below:

- (1) A-II, B-I, C-IV, D-III
- (2) A-I, B-II, C-III, D-IV
- (3) A-I, B-II, C-IV, D-III
- (4) A-III, B-II, C-IV, D-I
- 162. Once the undigested and unabsorbed substances enter the caecum, their backflow is prevented by
  - (1) Pyloric sphincter
  - (2) Sphincter of Oddi
  - (3) lleo caecal valve
  - (4) Gastro oesophageal sphincter

**163.** Match List I with List II with respect to human eye.

|    | List I     | List II                                                             |                                                                        |  |
|----|------------|---------------------------------------------------------------------|------------------------------------------------------------------------|--|
| A. | Fovea      | I. Visible coloured portion of eye that regulates diameter of pupil |                                                                        |  |
| B. | Iris       | II. External layer of eye formed of dense connective tissue.        |                                                                        |  |
| C. | Blind spot | III.                                                                | II. Point of greatest visual acuity or resolution.                     |  |
| D. | Sclera     | IV.                                                                 | Point where optic nerve leaves the eyeball and photoreceptor cells are |  |
|    |            |                                                                     | absent.                                                                |  |

Choose the correct answer from the options given below:

**(1)** A-II, B-I, C-III, D-IV

(2) A-III, B-I, C-IV, D-II

(3) A-IV, B-III, C-II, D-I

**(4)** A-I, B-IV, C-III, D-II

164. Match List I with List II

|                       | List I                                             | List II |                       |  |
|-----------------------|----------------------------------------------------|---------|-----------------------|--|
| (Interacting species) |                                                    |         | (Name of Interaction) |  |
| A.                    | A. A Leopard and a Lion in a forest/grassland      |         | Competition           |  |
| B.                    | A Cuckoo laying                                    |         | Brood parasitism      |  |
| C.                    | C. Fungi and root of a higher plant in Mycorrtizae |         | Mutualism             |  |
| D.                    | A cattle egret and a Cattle in a field             |         | Commensalism          |  |

Choose the correct answer from the options given below:

(1) A-II, B-III, C-I, D-IV

(2) A-I, B-II, C-III, D-IV

(3) A-I, B-II, C-IV, D-III

- **(4)** A-III, B-IV, C-I, D-II
- **165.** Which of the following statements are correct regarding female reproductive cycle?
  - A. In non-primate mammals cyclical changes during reproduction are called oestrus cycle
  - **B.** First menstrual cycle begins at puberty and is called menopause
  - **C.** Lack of menstruation may be indicative of pregnancy.
  - **D.** Cyclic menstruation extends between menarche and menopause.

Choose the most appropriate answer from the options given below:

- A, C and D only (2) A and D only (3) A and B only
- (4) A, B and C only

**166.** Given below are two statements:

**Statement I:** Low temperature preserves the enzyme in a temporarily inactive state whereas high temperature destroys enzymatic activity because proteins are denatured by heat.

**Statement II:** When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor.

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Both Statement I and Statement II are false
- (4) Statement I is true but Statement II is false
- **167.** Radial symmetry is NOT found in adults of phylum .
  - (1) Echinodermata (2)
    - 2) Ctenophora
- (3) Hemichordata
- (4) Coelenterata

168. Match List I with List II

| List I |                      |      | List II         |  |  |
|--------|----------------------|------|-----------------|--|--|
| A.     | Vasectomy            | I.   | I. Oral method  |  |  |
| B.     | Coitus interruptus   | II.  | Barrier method  |  |  |
| C.     | Cervical caps Saheli | III. | Surgical method |  |  |
| D.     | Saheli               | IV.  | Natural method  |  |  |

Choose the correct answer from the options given below:

(1) A-IV, B-II, C-I, D-III

(2) A-III, B-I, C-IV, D-II

(3) A-III, B-IV, C-II, D-I

**(4)** A-II, B-III, C-I, D-IV

**169.** Match List I with List II.

| List I (Cells) |               |      | List II (Secretion)                                                |  |  |
|----------------|---------------|------|--------------------------------------------------------------------|--|--|
| A.             | Peptic cells  | I.   | I. Mucus                                                           |  |  |
| B.             | Goblet cells  | II.  | II. Bile juice                                                     |  |  |
| C.             | Oxyntic cells | III. | Proenzyme pepsinogen                                               |  |  |
| D.             | Hepatic cells | IV.  | HCl and intrinsic factor for absorption of vitamin B <sub>12</sub> |  |  |

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I, D-III

(2) A-IV, B-III, C-II, D-I

(3) A-II, B-I, C-III, D-IV

(4) A-II, B-I, C-IV, D-II

170. In which blood corpuscles, the HIV undergoes replication and produces progeny viruses?

- (1) Eosinophils
- (2) T<sub>H</sub> cells
- (3) B-lymphocytes
- (4) Basophils

171. Vital capacity of lung is

(1) IRV + ERV + TV

(2) IRV + ERV

(3) IRV + ERV + TV + RV

(4) IRV + ERV + TV - RV

**172.** Given below are two statements:

**Statement I:** A protein is imagined as a line, the left end represented by first amino acid (C-terminal) and the right end represented by last amino acid (N-terminal)

**Statement II:** Adult human haemoglobin, consists of 4 subunits (two subunits of  $\alpha$  type and two subunits of  $\beta$  type.)

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is false but Statement II is true,
- (2) Both statement I and Statement III are true.
- (3) Both statement I and Statement II are false.
- (4) Statement I is true but Statement II is false.

173. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason It

**Assertion A:** Endometrium is necessary for implantation of blastocyst.

**Reason R:** In the absence of fertilization, the corpus luteum degenerates that causes disintegration of endometrium.

- (1) A is false but R is true,
- (2) Both A and R are true and R is the correct explanation of A.
- (3) Both A and R are true but R is NOT the correct explanation of A.
- (4) A is true but R is false.

- 174. Select the correct group/set of Australian Marsupials exhibiting adaptive radiation.
  - (1) Lemur, Anteater, Wolf
  - (2) Tasmanian wolf, Bobcat, Marsupial mole
  - (3) Numbat Spotted cuscus, Flying phalanger
  - (4) Mole, Flying squirrel, Tasmanian tiger cat
- 175. Match List I with List II.

| List I |           | List II |                                      |  |
|--------|-----------|---------|--------------------------------------|--|
| A.     | Heroin    | I.      | Effect on cardiovascular system      |  |
| B.     | Marijuana | II.     | Slow down body function              |  |
| C.     | Cocaine   | III.    | Painkiller                           |  |
| D.     | Morphine  | IV.     | Interfere with transport of dopamine |  |

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-I, D-II

(2) A-II, B-I, C-IV, D-III

(3) A-I, B-II, C-III, D-IV

(4) A-IV, B-III, C-II, D-I

176. Match List I with List II

## List I List II

- A. Ringworm I. Haemophilus influenzae
- B. Filariasis II. Trichophyton
- C. Malaria III. Wuchcreria bancrofli
- D. Pneumonia IV. Plasmodium vivax

Choose the **correct** answer from the options given below:

(1) A-III, B-II, C-IV, D-I

(2) A-II, B-III, C-IV, D-I

**(3)** A-II, B-III, C-I D-IV

- **(4)** A-III, B-II, C-I, D-IV
- **177.** Given below arc two statements:

**Statement I:** Electrostatic precipitator is most widely used in thermal power plant.

Statement II: Electrostatic precipitator in thermal power plant removes ionising radiations

In the light of the above statements, choose the *most appropriate* answer from the options given below:

- (1) Statement I incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect,
- (4) Statement I is correct but Statement II is incorrect.
- 178. Given below are statements: one is labelled as Assertion A and the other is labelled as Reason R.

**Assertion A:** Nephrons are of two types: Cortical Sc Juxta medullary, based on their relative position in cortex and medulla.

**Reason R:** Juxta medullary nephrons have short loop of Henle whereas, cortical nephrons have longer loop of Henle.

- (1) A is false but R is true.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) Both A and R are true but R is NOT the correct explanation of A
- (4) A is true but R is false.

- 179. Which of the following functions is carried out by cytoskeleton in a cell? Transportation Nuclear division (3) Protein synthesis (4) **(2)** 
  - **(1)**
- **180.** Broad palm with single palm crease is visible in a person suffering from: Thalassemia **(1)** 
  - **(3)** Turner's syndrome

- Down's syndrome **(2)**
- **(4)** Klinefelter's syndrome

Motility

**181.** Given below are two statements:

Statement I: In prokaryotes, the positively charged DNA is held with some negatively charged proteins in a region called nucleoid.

Statement II: In eukaryotes, the negatively charged DNA is wrapped around the positively charged histone octamer to form nucleosome.

In the light of the above statements, choose the **correct** answer from the options given below:

- **(1)** Statement I incorrect but Statement II is true.
- Both Statement I and Statement II are true. **(2)**
- Both Statement I and Statement II are false. **(3)**
- **(4) Statement I** is correct but **Statement** II is false.
- **182.** Match List I with List II.

|                                                         | List I      |      | List II                      |  |  |
|---------------------------------------------------------|-------------|------|------------------------------|--|--|
| A.                                                      | P - wave    | I.   | Beginning of systole         |  |  |
| B.                                                      | Q - wave    | II.  | Repolarisation of ventricles |  |  |
| C                                                       | QRS complex | III. | Depolarisation of atria      |  |  |
| D.                                                      | T - wave    | IV.  | Depolarisation of ventricles |  |  |
| Choose the correct answer from the options given below: |             |      |                              |  |  |

**(1)** A-I, B-II, C-III, D-IV **(2)** A-III, B-I, C-IV, D-II

A-IV, B-III, C-II, D-I **(3)** 

- **(4)** A-II, B-IV, C-I, D-III
- **183.** Which of the following statements is correct?
  - Algal Bloom decreases fish mortality **(1)**
  - Eutrophication refers to increase in domestic sewage and waste water in lakes. **(2)**
  - Biomagnification refers to increase in concentration of the toxicant at successive trophic levels. **(3)**
  - **(4)** Presence of large amount of nutrients in water restricts 'Algal Bloom'
- **184.** Given below are two statements:

**Statement I:** RNA mutates at a faster rate.

**Statement II:** Viruses having RNA genome and shorter life span mutate and evolve faster.

- **(1)** Statement I false but Statement II is true.
- **(2)** Both Statement I and Statement II are true.
- Both Statement I and Statement II are false. **(3)**
- Statement I is true but Statement II is false.
- **185.** Which one of the following symbols represents mating between relatives in human pedigree analysis?















| SECTION - B |                                                                                            | N - B                                   | BIOLOGY                                                                                                                           |            |                                                                                  | ZOOLOGY                   |                          |                          |  |
|-------------|--------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------|---------------------------|--------------------------|--------------------------|--|
| 186.        | The                                                                                        | parts of human brain tha                | t helps in regulation                                                                                                             | al behav   | viour, expr                                                                      | ession (                  | of excitement, pleasure, |                          |  |
|             | rage, fear etc. are:                                                                       |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | <b>(1)</b>                                                                                 | Corpus callosum and t                   | halamus                                                                                                                           | <b>(2)</b> | Limbic system Sc hypothalamus                                                    |                           |                          | thalamus                 |  |
|             | (3)                                                                                        | (3) Corpora quadrigemina Sc hippocampus |                                                                                                                                   |            |                                                                                  | Brain stem Sc epithalamus |                          |                          |  |
| 187.        | Matc                                                                                       | ch List I with List II.                 |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             |                                                                                            | List I                                  |                                                                                                                                   | List II    |                                                                                  |                           |                          |                          |  |
|             | A.                                                                                         | Logistic growth                         |                                                                                                                                   | I.         | Unlim                                                                            | ited resour               | ce avai                  | lability condition       |  |
|             | B.                                                                                         | Exponential growth                      |                                                                                                                                   | II.        | Limite                                                                           | d resource                | availal                  | bility condition         |  |
|             | C.                                                                                         | Expanding age pyrami                    | age pyramid  III. The percent individuals of pre-reproductive age is largest followed by reproductive and reproductive age groups |            |                                                                                  |                           |                          | by reproductive and post |  |
|             | D.                                                                                         | Stable age pyramid                      |                                                                                                                                   | IV.        | The percent individuals of pre-reproductives and reproductive age group are same |                           |                          |                          |  |
|             | Choo                                                                                       | ose the correct answer from             | om the options given                                                                                                              | below      | •                                                                                |                           | 8 F                      |                          |  |
|             | (1)                                                                                        | A-II, B-IV, C-III, D-I                  | 1 &                                                                                                                               | (2)        |                                                                                  | 3-I, C-III, I             | D-IV                     |                          |  |
|             | (3)                                                                                        | A-II, B-III, C-I, D-IV                  |                                                                                                                                   | (4)        | A-II, B-IV, C-I, D-III                                                           |                           |                          |                          |  |
| 188.        | Whi                                                                                        | ch of the following state               | ments are correct?                                                                                                                |            |                                                                                  |                           |                          |                          |  |
| 1001        | Α.                                                                                         | An excessive loss of b                  |                                                                                                                                   | odv swi    | tches of                                                                         | f osmorec                 | eptors.                  |                          |  |
|             | B.                                                                                         | ADH facilitates water                   | •                                                                                                                                 | -          |                                                                                  |                           | 1                        |                          |  |
|             | C.                                                                                         | ANF causes vasodilati                   |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | D. ADH causes increase in blood pressure.                                                  |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | E.                                                                                         | ADH is responsible for decrease in GFR. |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | Choo                                                                                       | ose the correct answer from             | om the options given                                                                                                              | below      | :                                                                                |                           |                          |                          |  |
|             | (1)                                                                                        | C, D and E only <b>(2)</b>              | A and B only                                                                                                                      | (3)        | B, C a                                                                           | nd D only                 | <b>(4)</b>               | A, B and E only          |  |
| 189.        | Selec                                                                                      | et the correct statements               | with reference to cho                                                                                                             | ordates.   |                                                                                  |                           |                          |                          |  |
|             | A.                                                                                         | Presence of a mid-dors                  | sal, solid and double                                                                                                             | nerve c    | ord.                                                                             |                           |                          |                          |  |
|             | B.                                                                                         | Presence of closed circ                 | culatory system.                                                                                                                  |            |                                                                                  |                           |                          |                          |  |
|             | C.                                                                                         | Presence of paired pha                  | ryngeal gillslits.                                                                                                                |            |                                                                                  |                           |                          |                          |  |
|             | D.                                                                                         | Presence of dorsal hea                  | rty                                                                                                                               |            |                                                                                  |                           |                          |                          |  |
|             | E.                                                                                         | Triploblastic pseudoco                  | elomate animals.                                                                                                                  |            |                                                                                  |                           |                          |                          |  |
|             |                                                                                            | ose the correct answer from             |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | (1)                                                                                        | C, D, and E only <b>(2)</b>             | A, C, and D only                                                                                                                  | (3)        | B and                                                                            | C only                    | (4)                      | B, D and E only          |  |
| 190.        | Whi                                                                                        | ch of the following is cha              | aracteristic feature of                                                                                                           | cockro     | oach reg                                                                         | arding sex                | ual dim                  | norphism?                |  |
|             | <b>(1)</b>                                                                                 | Presence of anal cerci                  |                                                                                                                                   | <b>(2)</b> | Dark b                                                                           | rown body                 | y colou                  | r and anal cerci         |  |
|             | (3) Presence of anal styles (4) Presence of sclerites                                      |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
| 191.        | . Given below are two statements:                                                          |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | <b>Statement I:</b> During $G_0$ phase of cell cycle, the cell is metabolically inactive.  |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             | <b>Statement II:</b> The centrosome undergoes duplication; during (S) phase of interphase: |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |
|             |                                                                                            | e light of the above state              |                                                                                                                                   |            |                                                                                  | -                         | -                        |                          |  |
|             | (1)                                                                                        | Statement I is incorrec                 | t but Statement II is                                                                                                             | correct.   |                                                                                  |                           |                          |                          |  |
|             | (2)                                                                                        | Both Statement I and S                  | Statement II are corre                                                                                                            | ect.       |                                                                                  |                           |                          |                          |  |
|             |                                                                                            |                                         |                                                                                                                                   |            |                                                                                  |                           |                          |                          |  |

(3)

**(4)** 

Both Statement I and Statement II are incorrect.

Statement I is correct but Statement II is incorrect.

| 102  | Which of the following are NOT under the control of thyroid hormone? |                                                                                                |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 192. | A.                                                                   | ·                                                                                              |  |  |  |  |  |  |  |
|      | В.                                                                   | Regulation of basal metabolic rate                                                             |  |  |  |  |  |  |  |
|      | C.                                                                   | Normal rhythm of sleep-wake cycle '                                                            |  |  |  |  |  |  |  |
|      | D.                                                                   | Development of immune system 0!                                                                |  |  |  |  |  |  |  |
|      | E.                                                                   | Support the process of R.B.Cs formation                                                        |  |  |  |  |  |  |  |
|      |                                                                      | Choose the correct answer from the options given below:                                        |  |  |  |  |  |  |  |
|      | (1)                                                                  | D and E only (2) A and D only (3) B and C only (4) C and D only                                |  |  |  |  |  |  |  |
| 193. | Whic                                                                 | h one of the following is the sequence on corresponding coding strand, if the sequence on mRNA |  |  |  |  |  |  |  |
|      | forme                                                                | ed is as follows                                                                               |  |  |  |  |  |  |  |
|      | 5' M.                                                                | JCGAUCGAUCGAUCG AVCG AUCO 3'?                                                                  |  |  |  |  |  |  |  |
|      | (1)                                                                  | 3' AT CGATCGATCGAT CG ATCGATCG 5'                                                              |  |  |  |  |  |  |  |
|      | <b>(2)</b>                                                           | 5' UAGCUAGCUAGCUAGCUAGC UAGC' 3'                                                               |  |  |  |  |  |  |  |
|      | (3)                                                                  | 3' UAGCUAGCUAGCUA GCUAGCUAGC 5'                                                                |  |  |  |  |  |  |  |
|      | <b>(4)</b>                                                           | 5' AT C'G AT CG ATCG AT COAT C G ATCGATCG 3'                                                   |  |  |  |  |  |  |  |
| 194. | The u                                                                | inique mammalian characteristics are:                                                          |  |  |  |  |  |  |  |
|      | <b>(1)</b>                                                           | pinna, monocondylic skull and mammary glands                                                   |  |  |  |  |  |  |  |
|      | <b>(2)</b>                                                           | hairs, tympanic membrane and mammary glands                                                    |  |  |  |  |  |  |  |
|      | (3)                                                                  | hairs, pinna and mammary glands                                                                |  |  |  |  |  |  |  |
|      | <b>(4)</b>                                                           | hairs, pinna and indirect development                                                          |  |  |  |  |  |  |  |
| 195. | Whic                                                                 | ich one of the following is NOT an advantage of inbreeding?                                    |  |  |  |  |  |  |  |
|      | (1)                                                                  | It decreases the productivity of inbred population, after continuous inbreeding.               |  |  |  |  |  |  |  |
|      | <b>(2)</b>                                                           | It decreases homozygosity.                                                                     |  |  |  |  |  |  |  |
|      | (3)                                                                  | It exposes harmful recessive genes that are eliminated by selection.                           |  |  |  |  |  |  |  |
|      | <b>(4)</b>                                                           | Elimination of less desirable genes and accumulation of superior genes takes place due to it.  |  |  |  |  |  |  |  |
| 196. | Whic                                                                 | h of the following statements are correct?                                                     |  |  |  |  |  |  |  |
|      | A.                                                                   | Basophils are most abundant cells of the total WBCs                                            |  |  |  |  |  |  |  |
|      | B.                                                                   | Basophils secrete histamine, serotonin and heparin                                             |  |  |  |  |  |  |  |
|      | C.                                                                   | Basophils are involved in inflammatory response                                                |  |  |  |  |  |  |  |
|      | D.                                                                   | Basophils have kidney shaped nucleus                                                           |  |  |  |  |  |  |  |
|      | E.                                                                   | Basophils are agranulocytes                                                                    |  |  |  |  |  |  |  |
|      |                                                                      | se the correct answer from the options given below:                                            |  |  |  |  |  |  |  |
|      | (1)                                                                  | A and B only (2) D and E only (3) C and E only (4) B and C only                                |  |  |  |  |  |  |  |
| 197. |                                                                      | t the correct statements.                                                                      |  |  |  |  |  |  |  |
|      | A.                                                                   | Tetrad formation is seen during Leptotene                                                      |  |  |  |  |  |  |  |
|      | B.                                                                   | During Anaphase, the centromeres split and chromatids separate.                                |  |  |  |  |  |  |  |
|      | C.                                                                   | Terminalization takes place during Pachytene.                                                  |  |  |  |  |  |  |  |
|      | D.                                                                   | Nucleolus, Golgi complex and ER are reformed during Telophase.                                 |  |  |  |  |  |  |  |
|      | E.                                                                   | Crossing over takes place between sister chromatids of homologous chromosome.                  |  |  |  |  |  |  |  |
|      | Choose the correct answer from the options given below:              |                                                                                                |  |  |  |  |  |  |  |
|      | (1)                                                                  | B and E only (2) A and C only (3) B and D only (4) A, C and E only                             |  |  |  |  |  |  |  |
|      |                                                                      |                                                                                                |  |  |  |  |  |  |  |

| 198. | In co                                                                                                     | ckroach, excretion                                    | is brou    | ight about by-       |          |                               |         |                  |  |  |
|------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|----------------------|----------|-------------------------------|---------|------------------|--|--|
|      | A                                                                                                         | Phallic gland                                         | B.         | Urecose gland        | C        | Nephrocytes                   | D.      | Fat body         |  |  |
|      | E.                                                                                                        | Collaterial glands                                    | S          |                      |          |                               |         |                  |  |  |
|      | Choo                                                                                                      | ose the correct answ                                  | ver froi   | n the options give   | n below  | r:                            |         |                  |  |  |
|      | <b>(1)</b>                                                                                                | B and D only                                          | (2)        | A and E only         | (3)      | A, B and D only               | (4)     | B, C and D only  |  |  |
| 199. | Matc                                                                                                      | ch List I with List I                                 | I.         |                      |          |                               |         |                  |  |  |
|      |                                                                                                           | List I                                                |            |                      |          | List II                       |         |                  |  |  |
|      | A.                                                                                                        | Mast cells                                            |            |                      | I.       | Ciliated epithelium           | m       |                  |  |  |
|      | B.                                                                                                        | Inner surface of b                                    | oronchi    | ole                  | II.      | Areolar connectiv             | e tissu | ie               |  |  |
|      | C.                                                                                                        | Blood                                                 |            |                      | III.     | Cuboidal epithelii            | um      |                  |  |  |
|      | D.                                                                                                        | Tubular parts of                                      | nephroi    | 1                    | IV.      | specialised connective tissue |         |                  |  |  |
|      | Choo                                                                                                      | noose the correct answer from the options give below: |            |                      |          |                               |         |                  |  |  |
|      | <b>(1)</b>                                                                                                | A-III, B-IV, C-II                                     | , D-I      |                      | (2)      | A-I, B-II, C-IV, D            | O-III   |                  |  |  |
|      | (3)                                                                                                       | A-II, B-III, C-I, I                                   | O-IV       |                      | (4)      | A-II, B-I, C-IV, D            | O-III   |                  |  |  |
| 200. | Whic                                                                                                      | ch of the following                                   | statem     | ents are correct re  | garding  | skeletal muscle?              |         |                  |  |  |
|      | A.                                                                                                        | Muscle bundles a                                      | re held    | together by collag   | genous   | connective tissue la          | yer ca  | lled fascicle.   |  |  |
|      | B.                                                                                                        | Sarcoplasmic reti                                     | culum      | of muscle fibre is   | a store  | house of calcium io           | ns.     |                  |  |  |
|      | C. Striated appearance of skeletal muscle fibre is due to distribution pattern of actin and myo proteins. |                                                       |            |                      |          |                               |         | actin and myosin |  |  |
|      | D.                                                                                                        | M line is conside                                     | red as t   | functional unit of o | contract | ion called sarcomer           | e.      |                  |  |  |
|      | Choo                                                                                                      | ose the most approp                                   | oriate a   | nswer from the op    | tions gi | ven below:                    |         |                  |  |  |
|      | (1)                                                                                                       | C and D only                                          | <b>(2)</b> | A, B and C only      | (3)      | B and C only                  | (4)     | A, C and D only  |  |  |
|      |                                                                                                           |                                                       |            |                      |          |                               |         |                  |  |  |
|      |                                                                                                           |                                                       |            |                      |          |                               |         |                  |  |  |