

JEE Main – 2023 24th JAN 2023 (Morning Shift)

General Instructions

- **1.** The test is of **3 hours** duration and the maximum marks is **300.**
- 2. The question paper consists of **3 Parts** (Part I: **Physics**, Part II: **Chemistry**, Part III: **Mathematics**). Each Part has **two** sections (Section 1 & Section 2).
- **3. Section 1** contains **20 Multiple Choice Questions**. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE CHOICE** is correct.
- 4. Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. You will NOT be allowed to attempt the sixth question. If you wish to attempt any other question apart from the five already attempted, then you will have to delete any one response from the five previously answered and then proceed to answer the new one.
 - The answer to each question should be rounded off to the nearest integer.
- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.

Marking Scheme

- 1. Section -1: +4 for correct answer, -1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SUBJECT I: PHYSICS

MARKS: 100

SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE CHOICE is correct.**

1. If two charges are separated with distance 'd' and placed in a medium of dielectric constant K. What will be the equivalent distance between charges in air for the same electrostatic force?

(2) (4) (1) (3)

2. Pa pressure. If 10% of the heat supplied is used for 1 g of a liquid is converted to vaour at increasing the volume by during this phase change, then the increase in internal energy in the process will be:

432000 J4800 J**(1) (2) (3) (4)** 4320 J

3. Given below are two statements:

> Statement I: An elevator can go up or down with uniform speed when its weight is balanced with the tension of its cable.

> Statement II: Force exerted by the floor of an elevator on the foot of a person standing on it is more than his/her weight when the elevator goes does with increasing speed.

In the light of the above statement, choose the correct answer form the options given below:

- Statement I is false but Statement II is true **(1)**
- Both Statement I and Statement II are false **(2)**
- **(3)** Statement I is true but Statement II is false
- Both Statement I and Statement II are true **(4)**
- 4. Match Column I with Column II

	Column I		Column II
I.	Planck's constant (h)	P.	
II.	Stopping potential (Vs)	Q.	
III.	Work function	R.	
IV.	Momentum (p)	S.	

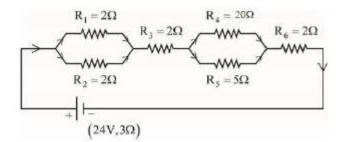
Choose the correct answer form the options given below:

I-P; II-R; III-S; IV-QI - R; II - S; III - P; IV - Q**(1) (2)**

I-Q; II-S; III-R; IV-PI - R; II - P; III - Q; IV - S**(3) (4)**

5. A conducting circular loop of radius cm is placed perpendicular to a uniform magnetic field of 0.5

T. the magnetic field is decreased to zero in 0.5 s at a steady rate. The induced emf in the circular loop at 0.05 s is:


(1) emf = 1 mVemf = 5 mV**(2)**

emf = 100 mVemf = 10 mV**(4) (3)**

6.	Consi	der the following	g radioac	etive decay proc	eess				
	The m	nass number and	the aton	nic number of	are giv	en by :			
	(1)	210 and 82	(2)	210 and 84	(3)	210 and 80	(4)	211 and 80	
7.	(R). Assert measu Reaso junctio	tion (A): Photogrement. In (R): The current diode. In the current diode. It is false but (A) is false but (A) is true but Both (A) and the current diode.	rent in the restatement in the statement in the restatement (R) is the restatement (R) are the restate	are preferably he forward bias nent, choose the rue alse rue but (R) is N	operate is is more correct a	ed in reverse to	ent in the options on of (A)		tensity
8.	The n	naximum vertica	al height	t to which a m	an can t	hrow a ball is	136m. Т	The maximum hori	zontal
		ce upto which he							
	(1)	272 m	(2)	136 m	(3)	192 m	(4)	68 m	
9.	Staten speed Staten energy	of the molecules nent II: The pro- y of the molecule light of the above Statement I is Statement I is Both Statemen	perature is is doubled to fees. Ve statem true but false but it I and S	of a gas is -73° led. pressure and vo	olume of e correct false true false	an ideal gas wi	ill be equ	°C, the root mean sal to translational k	
10.	A mod	dulating signal is	s a squar	e wave, as shov	vn in the	figure.			
	,	m(t) 0			1		2	— t(s)	
	If the	carrier wave is g	given as		volts, t	the modulation	index is:		
	(1)		(2)		(3)	1	(4)		
11.		cular loop of rad and at a distance				_	netic field	l at the centre of ci	ircular
	(1)		(2)		(3)		(4)		

12.	From the phot correct.	oelectric effect experime	nt, following observation	ns are made. Identify w	nich of these are
	I. The st II. The sa III. The m IV. Photoe	opping potential depends aturation current increase aximum kinetic energy of electric effect can be exp rrect answer from the opt	as the intensity of incide of a photo electron dependanced using wave theory	nt light increases ds on the intensity of the	incident light
		V only (2) II, III o		(4) I, III, I	IV only
13.	5 cm distance	ight wires <i>P</i> and <i>Q</i> carry. Magnitude of magnetic is halved and currents or	force experienced by 10	cm length of wire P is	s If distance
	(1)	(2)	(3)	(4)	
14.		re two statements : If the Brewster's angle	e for the light propagat	ing from air to glass i	s then the
	Bresster's ang	le for the light propagatir	ng from glass to air is		
	Statement II:	The Brewster's angle for	the light propagating from	om glass to air is	where
	In the light of (1) Staten (2) Staten (3) Both S	e index of glass. the above statements, cho nent I is false but Statement nent I is true but Statement Statement I and Statemen Statement I and Statemen	ent II is true nt II is false t II are true	rom the options given be	elow:
15.	As per given	figure, a weightless pull	ey P is attached on a do	ouble inclined frictionle	ss surfaces. The
	tension in the	string (massless) will be	(if)	l Kg	
	(1)	(2)	(3)	(4)	
16.	A travelling w	ave is described by the ed	quation		
	The velocity o	f the wave is : [all the qu	antities are in SI unit]		
	(1)	(2)	(3)	(4)	
17.	In rep field vector is (- angular fr	· ·	propagation vectors of the	ne EM waves in vacuun	n, then magnetic
L	(1)	(2)	(3)	(4)	

18. As shown in the figure, a network of resistors is connected to a battery of 24V with an internal resistance of The currents through the resistors are respectively. The values of are:

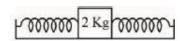
(1)

(3)

19. A 100 m long wire having cross-sectional area and Yough's modulus is subjected to a load of 250N, then the elongation in the wire will be :

(1)

(3)


20. The weight of a body at the surface of earth is 18 N. The weight of the body at an altitude of 3200 km above the earth's surface is (given, radius of earth):

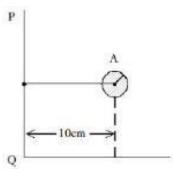
(1) 9.8 N (2) 4.9 N (3) 8 N (4) 19.6 N

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

- 21. A spherical body of mass 2 kg starting from rest acquires a kinetic energy of 10000 J at the end of 5th second. The force acted on the body is N.
- A block of a mass 2 kg is attached with two identical springs of spring constant 20 N/m each. The block is placed on a frictionless surface and the ends of the springs are attached to rigid supports (see in figure). When the mass is displaced from its equilibrium position, it executes a simple harmonic motion.

The time period of oscillation is in SI unit. The value of x is .

- 23. Assume that protons and neutrons have equal masses. Mass of a nucleon is and radius of nucleus is The approximate ratio of the nuclear density and water density is The value of *n* is _____.
- 24. In the circuit shown in the figure, the ratio of the quality factor and the band width is ______ s.



25. A stream of a positively charged particles having

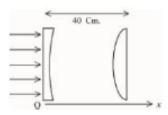
and velocity

is

- deflected by an electric field x The electric field exists in a region of 10 cm along x direction. Due to the electric field, the deflection of the charge particles in the x direction is _____.
- Solid sphere A is rotating about an axis PQ. If the radius of the sphere is 5 cm then its radius of gyration about PQ will be The value of x is _____.

27. A hole is drilled in a metal sheet. At 27°C, the diameter of hole is 5 cm. When the sheet is heated to 177°C the change in the diameter of hole is The value of d will be ______ if coefficient

of linear expansion of the metal is


28. Vector are perpendicular to each other when the ratio of a to b

is . The value of x is _____.

29. A hollow cylindrical conductor has length of 3.14 m, while its inner and outer diameters are 4 mm and 8 mm respectively. The resistance of the conductor is
If the resistivity of the material is

The value of n is _____.

As shown in the figure, a combination of thin plano concave lens and a thin plano convex lens is used to image an object at infinity. The radius of curvature of both the lenses is 30 cm and refraction index of the material for both the lenses is 1.75. Both the lenses are placed at distance of 40 cm from each other. Due to the combination, the image of the object is formed at distance x =____ cm from concave lens.

24th JAN (Morning Shift)

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

1. Order of covalent bond;

I.

II.

III.

IV.

V.

Choose the correct answer from the options given below:

(1) II, III, V only

(2) III, V only

(3) II, III only

(4) I, II only

2. Assertion (A): Hydrolysis of an alkyl chloride is a slow reaction but in the presence of NaI, the rate of the hydrolysis increases.

Reason (R): is a good nuclephile as well as a good leaving group.

In the light of the above statements, choose the correct answer from the options given below

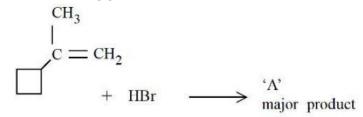
- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true but (R) is NOT the correct explanation of the (A)
- (A) is true but (R) is false
- (4) Both (A) and (R) are true, and (R) is the correct explanation of the (A)
- 3. Match Column I with Column II

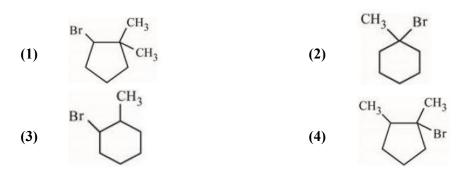
	Column I		Column II
I.	Chlorophyll	P.	
II.	Soda ash	Q.	
III.	Dentistry, Ornamental work	R.	
IV.	Used in white washing	S.	

Choose the correct answer from the options given below:

- (1) I R; II S; III P; IV Q
- (2) I Q; II P; III R; IV S
- (3) I Q; II R; III S; IV P
- (4) I R; II P; III Q; IV S
- **4.** Decreasing order of the hydrogen bonding in following forms of water is correctly represented by
 - I. Liquid water
 - II. Ice
 - III. Impure water

Choose the correct answer from the options given below:


- $(1) \qquad ||| > || > |$
- $(2) \qquad I > II > III$
- (3) II > I > III
- (4) I = II > III


5. The primary and secondary valencies of cobalt respectively in

are:

- (1) 2 and 6
- (2) 3 and 5
- (3) 2 and 8
- (4) 3 and 6

6. In the following given reaction 'A' is

7. The magnetic moment of a transition metal compound has been calculated to be 2.87 B.M. The metal ion is

(3)

(4)

- (1) (2)
- **8.** Increasing order of stability of the resonance structures is :

OHC
$$\Theta$$
 NH_2

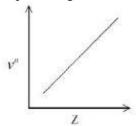
II. Θ Θ NH_2

IV. OHC + NH₂

Choose the correct answer from the options given below:

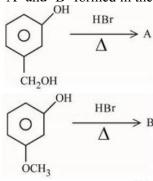
- (1) IV, III, II, I (2) IV, III, I, II (3) III, IV, II, I (4) III, IV, I, II
- **9.** Given below are two statements:

III.


Statement I: Noradrenaline is a neurotransmitter

Statement II: Low level of noradrenaline is not the cause of depression in human

In the light of the above statements, choose the correct answer from the options given below


- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true

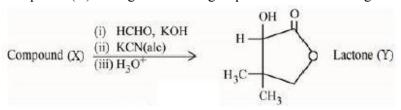
- **10.** Statement I : For colloidal particles, the values of colligative properties are of small order as compared to values shown by true solutions at same concentration.
 - Statement II: For colloidal particles, the potential difference between the fixed layer and the diffused layer of same charges is called the electrokinetic potential or zeta potential.
 - In the light of the above statements, choose the correct answer from the options given below
 - (1) Both Statement I and Statement II are true
 - (2) Both Statement I and Statement II are false
 - (3) Statement I is false but Statement II is true
 - (4) Statement I is true but Statement II is false
- 11. It is observed that characteristic X-ray spectra of elements show regularity. When frequency to the power "n" i.e., of X-rays emitted is plotted against atomic number "Z", following graph is

The value of "n" is

- **(1)** 3
- **(2)** 2
- (3)
- **(4)**
- 12. 'A' and 'B' formed in the following set of reactions are:

(2)
$$A = \bigcirc Br$$
, $B = \bigcirc Br$

(3)
$$A = \bigcirc OH$$
, $B = \bigcirc OH$


13. Match Column I with Column II

	Column I	Column II		
I.	Reverberatory furnace	P.	Pig Iron	
II.	Electrolytic cell	Q.	Aluminum	
III.	Blast furnace	R.	Silicon	
IV.	Zone refining furnace	S.	Copper	

Choose the correct answer from the options given below:

- (1) I P; II R; III Q; IV S
- (2) I S; II Q; III P; IV R
- (3) I R; II S; III P; IV Q
- (4) I P; II S; III Q; IV R

14. Compound (X) undergoes following sequence of reactions to given the Lactone (Y)

Compound (X) is

- (1)
- (3)

15. In the depression of freezing point experiment

- I. Vapour pressure of the solutions is less than that of pure solvent
- II. Vapour pressure of the solution is more than that of pure solvent
- III. Only solute molecules solidify at the freezing point
- IV. Only solvent molecules solidify at the freezing point

Choose the most appropriate answer from the options given below:

- choose the most appropriate answer from the options given below
- (1) I and IV only (2) I only (3) II and III only (4) I and III only

16. Reaction of BeO with ammonia and hydrogen fluoride gives A which on thermal decomposition gives and What is 'A'?

- (1) (2) (3)
- 17. Which of the following is true about freons?
 - (1) All radicals are called freons
 - (2) These are chlorofluorocarbon compounds
 - (3) These are radicals of chlorine and chlorine monoxide
 - (4) These are chemicals causing skin cancer

18. Which of the Phosphorus oxoacid can create silver mirror from solution?

(1) (2) (3)

- 19. An ammoniacal metal salt solution gives a brilliant red precipitate on addition of dimethylglyoxime. The metal ion is:
 - (1) (2) (3)
- **20.** 'R' formed in the following sequence of reactions is:

$$\begin{array}{c|c}
\hline
 & NaCN \\
\hline
 & HOAc
\end{array}$$
'P'
$$\begin{array}{c}
\hline
 & EtOH \\
\hline
 & H^+
\end{array}$$
'Q'
$$\begin{array}{c}
\hline
 & (i) \ 2MeMgBr \\
\hline
 & (ii) \ H_3O^+
\end{array}$$
'R'
major product

(1)
$$OH_{Me}$$
 Me Me OH_{Me} Me Me OH_{Me} Me OH_{Me} Me OH_{Me} Me OH_{Me} Me OH_{Me} Me OH_{Me} OH_{M

(3)
$$OH$$
 Me Me OH OH Me OH OH ME OH ME OH ME OH ME OH ME OH ME OH

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

- 21. If wavelength of the first line of the Paschen series of hydrogen atom is 270 nm, then the wavelength of the second line of this series is nm. (Nearest integer).
- 22. At 298 K, a 1 litre solution containing 10 mmol of

and 100 mmol of

shows a pH of 3.0.

Given:

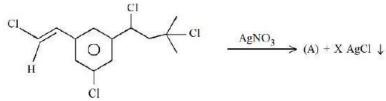
and

The potential for the half cell reaction is

The value of x is .

23. For independent processes at 300 K

Process		
A	-25	-80
В	-22	40
С	25	-50
D	22	20


The number of non-spontaneous processes from the following is

5 g of NaOH was dissolved in deionized water to prepare at 450 mL stock solution. What volume (in mL) of this solution would be required to prepare 500 mL of 0.1 M solution? _____

Given: Molar Mass of Na, O and h is 23, 16 and

respectively

25. Number of moles of AgCl formed in the following reaction is ______.

26. The dissociation costant of acetic acid is

When 25 mL of 0.2 M

solution is

mixed with 25 mL of

solution, the pH of the resultant solution is found to be equal

to 5. The value of x is _____.

27. The d-electronic configuration of

in tetrahedral crystal field is

Sum of "m" and

28. Uracil is a base present in RNA with the following structure. % of N in uracil is

Given:

Molar mass

29.	The nu	mber of correct statement/s from the following is									
	I.	Larger the activation energy, smaller is the value of the rate constant									
	II.	The higher is the activation energy, higher is the value of the temperature coefficient									
	III.	At lower temperatures, increase in temperature causes more change in the value of k than at higher temperature									
	IV.	IV. A plot of ln k vs is a straight line with slope equal to									
30.	When	is heated in presence of oxygen, it converts to The number of correctent/s from the following is									
	I.	The equivalent weight of is									
	II.	The number of moles of in 1 mole of is 0.79 and 0.14 respectively									
	III.	is metal deficient with lattice comprising of cubic closed packed arrangement of									
		ions									
	IV.	The % composition of and in is 85% and 15% respectively									

SUBJECT III: MATHEMATICS	MARKS: 100

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

ONLY	ONE CHO	OICE is corre	ct.									
1.	Let	be a root	of the equa	ation				wł	nere	are	distinct	real
	numb	ers such	that the	matrix			is	singular.	Then,	the	value	of
						is						
	(1)	3	(2)	12		(3)	9	(4	4) 6			
2.	Let				aı	nd		The	is equ	al to		
			(2)	2			1		_			
	(1)		(2)	2		(3)	1	(4	•)			
					•	1 ,						
3.					is equa	al to						
	(1)		(2)	n		(3)		(4	4)			
4.	The re	elation					is:					
	(1)		c but not tra			(2)		xive but not	-	c		
	(3)	Neither sy	mmetric no	r transitive	(4)	Trans	itive but	t not reflexiv	e			
5.	Let	be t	the solution	of the diffe	rential	equation	on					
	Then	is equa	l to									
	(1)		(2)	1		(3)	3	(4	l) e			
6.	The e	quation		V	where	den	otes the	greatest inte	ger functi	on, has	3:	
	(1)	A unique	solution in			(2)	Exact	tly two soluti	ion in			
	(3)	No solution	on			(4)	A uni	que solution	in			
7.	Let	and					Then	1	and		are roo	ts of
	the eq	uation.										
	(1)					(2)						
	(3)					(4)						

8.	Let F	QR be a tria	angle. The po	oints A, I	B and C are on the	e sides QR, RP and	PQ resp	pectively such that
			Then		is equal to :			
	(1)	3	(2)	4	(3)	(4)	2	
9.	Let							
	Then (1) (2) (3) (4)	f is continuis confiscontinuis	nuous but tinuous but n nuous but not both are con	different	ntiable			
10.	The	distance of t	the point		from the plane	me	easured p	parallel to the line
			is					
	(1)	26	(2)		(3)	(4)	31	
11.	The v	value of	is					
	(1)		(2)		(3)	(4)		
12.	If A	and B are two	o non-zero	matri	es such that	then		
	(1)				(2)			
	(3)				(4)			
13.	State	n below are to ment I : If P(ment II : P(1 Both State Only State		s: Statement ue	be an event.			
	(4)	-	ement I and S		II are true			
14.	Let <i>I</i> equat		number that	turns up	when a fair die i	s rolled. If the pro	bability	that the system of
	Hası	ınique soluti	on is the	1 the sum	of value of k and :	all possible values o	of N is	
	(1)	20	(2)	18		1 (4)	19	

15.	For three positive integers			and su		such that 3, 3			
		are in	A.P. with comn	non difference	Then	ı i	s equal to		
	(1)	12	(2)	2	(3)	-6	(4)	6	
16.	The d	istance of is:	the point	from the J	plane pa	ssing throug	h the points		and
	(1)		(2)		(3)	4	(4)	5	
17.	Let a tangent to the curve meet of such line segment <i>AB</i> lie on a parabola v (1) Directrix		meet the a parabola with		at the	points A and	l B. Ther	n the mid-points	
	(3)	Length	of latus rectum	1	(4)	Length of	latus rectum		
18.	The a	rea enclos	ed by the curves	s a	ınd	is:			
	(1)	9	(2)		(3)		(4)		
19.	The c	ompound	statement				is eq	uivalent	to
	(1)				(2)				
	(3)				(4)				
20.				is equa	ıl to :				
	(1)		(2)		(3)		(4)		

Section 2 contains 10 Numerical Value Type Questions Out of which ONLY 5 (any) questions have to be attempted. The answer to each question should be rounded off to the nearest integer.

21.	Suppose		Then the value of is	·		
22.	· ·	choose at most two lan	12 available courses, or guage courses, then the r			
23.	The value of	is				
24.	Let a tangent to the the minimum length	curve a of the lien segment Al	intersect the coordina B is	ite axes at the j	point A an	d B. Then,
25.	The 4 th term of GP i	s 500 and its common	ratio is Let	denote the s	um of the	fist <i>n</i> terms
	of this GP. If	and	then the number of pos	ssible values of	f <i>m</i> is	
26.		git numbers, that can be by only even places, is _	e formed using all the dig	its of the numb	er 123412	341 so that
27.		the equation E to integer solution of E}		Then the large	st element	in the set
28.	The value of		is			
29.	The shortest distance	ce between the lines	and	d		is equal to
	.					
30.	Let C be the largest	circle centred at (2,0)	and inscribed in the ellips	se	If	lies on C,
	then is equal	to				

